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Introduction 

The SleepImage® System is in compliance with the EU Medical Device Regulation 2017/745 (CE 2862) and is U.S. Food and Drug 
Administration (FDA) cleared Software as a Medical Device (SaMD), K182618. The SleepImage System collects simultaneous  
recordings of heart rate, oxygen saturation and actigraphy, with a photoplethysmography (PPG) sensor applied at the finger for 
respiratory and sleep analysis. The following signals (channels) are continuously sampled during sleep and analyzed with a 
proprietary algorithm cardiopulmonary coupling (CPC), not using Artificial Intelligence (AI): (1) peripheral arterial tone (pat; a 
measurement of pulsatile volume changes reflecting changes in sympathetic tone and hemodynamics), (2) heart (pulse) rate 
(HR), (3) heart (pulse) rate variability (HRV), (4) blood oxygenation (oximetry, SpO2), (5) changes in breathing (respiration, tidal 
volume variability; TVV) and (6) movement (actigraphy). All channels of raw data are presented for the purpose of visualizing 
concurrent physiology and to review the autoscored respiratory events with ability for manual scoring/analysis as determined 
appropriate by the user. The signal quality of the recorded raw physiological data is documented and presented with the color-
coded “Signal Quality” line. 

The SleepImage System is FDA-cleared to aid clinical diagnosis of Sleep Disordered Breathing (SDB) in children, adolescents, and 
adults. The output from the SleepImage System is based on cardiopulmonary coupling (CPC) analysis to calculate various sleep 
related output metrics. The output metrics include sleep stages: Stable Non-Rapid Eye Movement (sNREM), Unstable NREM 
(uNREM) and REM sleep), sleep onset (SO), sleep conclusion (SC), sleep duration (SD), total sleep time (TST), wake after sleep 
onset (WASO) and sleep quality (SQI). The sleep disordered breathing (SDB) related output metrics include 3% and 4% 
desaturation events, including a total SleepImage Apnea Hypopnea Index (sAHI), an obstructive AHI (sAHIobstructive), a central AHI 
(sAHIcentral), a Respiratory Disturbance Index (sRDI), an Oxygen Desaturation Index (ODI), and the Sleep Apnea Indicator (SAI) 
that is derived from Cyclic Variation in Heart Rate (CVHR) that does not include changes in blood oxygenation. 

The SleepImage System is a patented, Health Insurance Portability and Accountability Act (HIPAA) compliant cloud-based 
system. It is intended for use by, or on the order of a Healthcare Professional to establish sleep quality, and to aid in the 
evaluation of sleep disorders to inform or drive clinical management, as well as to aid in diagnosis and management of SDB. 
The SleepImage System is FDA-cleared/MDR-CE-marked for use with children from age 2, adolescents and adults.   

The validation of the SleepImage System utilized clinical Polysomnography (PSG) as the standard upon which it was compared. 
Data presenting periods of sleep identified by both systems were compared for validation and published. Please refer to the 
List of Publications which can be found on the last few pages of this document. 

The SleepImage System is cleared for use in various countries around the world. This document is intended to be relevant for 
clinical users in all countries where the SleepImage System is cleared for use and is intended for general educational purposes. 
For information on how to use the SleepImage System, please refer to SleepImage System Instructions for Use. For information 
on where the SleepImage System is available and contact information for SleepImage representatives in different countries, 
please contact support@sleepimage.com. 

  

https://www.accessdata.fda.gov/cdrh_docs/pdf18/K182618.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K182618.pdf
https://sleepimage.com/wp-content/uploads/SleepImage-System-IFU.pdf
mailto:support@sleepimage.com
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Understanding the SleepImage Benefits 

Good sleep quality is crucial for good physical and mental health. One of the key benefits of using the SleepImage System in 
clinical practice is that unlike most clinical sleep measurements systems, it is not restricted to evaluate only SDB. SleepImage is 
a comprehensive measure of physiology during sleep, based on collecting and analyzing signals controlled by the autonomic 
nervous system (ANS), reflecting changes in hemodynamics and breathing. 1-4 Sleep is controlled in the midbrain and during 
sleep signals are sent to both the surface of the brain where changes in electroencephalographic (EEG) signals allow for 
estimating sleep stages from the surface of the brain by utilizing Polysomnography (PSG). Simultaneously to changes in 
brainwaves, there are changes in the ANS-output that affect heart rate and breathing that change with sleep depth, which 
allows for estimation of sleep stages (Figure 1).  

 

Figure 1. Changes in brain- and peripheral activity during sleep. 

The SleepImage System is based on a proprietary algorithm (cardiopulmonary coupling, CPC) coupling heart rate variability 
(HRV) and tidal volume variability (TVV) in respiration during sleep; both biosignals are highly influenced by the ANS 
(sympathetic and parasympathetic influence). Observing the synchronization (coupling) between the cardiovascular- and 
respiratory systems during sleep when there are minimum environmental stimuli that can affect the ANS as happens during 
wake, allows for measures of sleep and sleep staging. 1,2 3 Oxygen saturation (SpO2) data is used with CPC-analysis to calculate 
the SleepImage Apnea Hypopnea Index (sAHI) and the SleepImage Respiratory Disturbance Index (sRDI). The data is 
automatically calculated, and the output is presented through easy-to-understand biomarkers, that are displayed with expected 
normative thresholds and color-coded results for each biomarker. The SleepImage System FDA-clearance states that (1) The 
SleepImage System establishes Sleep Quality based on the Sleep Quality Index (SQI), a summary biomarker of sleep health 
cleared as a unit of measure, presented on a scale of 0 – 100. The SQI has demonstrated a direct relationship with health 
outcomes in clinical studies,  5-8 9-17 (2) the SleepImage Apnea Hypopnea Index (sAHI) has been clinically validated and FDA-
cleared for children, adolescents and adults for diagnosis and management of Sleep Disordered Breathing (SDB). 18,19  
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1 To evaluate clinical symptoms of Insomnia or Sleep Apnea, 2 To track if treatment is improving objective sleep parameters 
3 OSA = Obstructive Sleep Apnea; CSA = Central Sleep Apnea 

The SleepImage System Features and Benefits are summarized as follows: 

  SleepImage PSG HSAT 

Patient Populations 

Asymptomatic ✅   

Symptomatic ✅ ✅ ✅ 

Children ✅ ✅  

Adults ✅ ✅ ✅ 

Types of Testing 

Sleep Disorder Evaluation1 ✅   

Sleep Disorder Screening ✅   

OSA Diagnosis in Children  ✅ ✅  

OSA Diagnosis in Adults ✅ ✅ ✅ 

Treatment Tracking2 ✅   

Test Output 

Sleep Quality ✅ ✅  

Sleep Duration ✅ ✅  

NREM & REM Sleep ✅ ✅  

Phenotype OSA vs. CSA3 ✅ ✅  

 

For the purpose of diagnosing SDB, the US FDA-clearance for SleepImage states the following: “Clinical evaluation has confirmed 
that the SleepImage System auto-scoring algorithms calculating the SleepImage Apnea Hypopnea Index (sAHI) generate 
comparable output to human manual scoring of an Apnea Hypopnea Index (AHI) from Polysomnography (PSG) studies, using 
American Academy of Sleep Medicine (AASM) scoring guidelines for children and adult patients.” 8 

Understanding the SleepImage Science  

Everyone sleeps and sleep is an important modulator of various biological functions. SleepImage is a tool that can enhance 
clinical practice across all medical specialties. Prior to the onset of a chronic disease, symptoms may be present, and prior to 
symptoms there are reflections of changes in ANS regulation that are not obvious. The sleep period, on average, represents one 
third of a person´s life and getting sufficient good quality sleep at the right circadian times is vital for good health and wellbeing. 
During sleep, muscles and tissues are rebuilt, neuroendocrine- and metabolic functions are regulated, information collected 
during the waking hours are reorganized and consolidated for learning and memory consolidation, and the immune system is 
strengthened. 20,21 These benefits of sleep can only happen when sleep is dominated by parasympathetic activity (restful part 
of the sleep period facilitating good quality sleep). The SleepImage output clearly distinguishes between parasympathetic and 
sympathetic dominance and presents the output as ‘Stable’ and ‘Unstable’ NREM-sleep reflecting sleep health. That is why 
SleepImage brings value beyond the focus on diagnosis of SDB. 

 

The SleepImage System utilizes continuously and evenly sampled photoplethysmogram (PPG) signal input from the peripheral 
arterial vasculature (peripheral arterial tone) for Cardiopulmonary Coupling (CPC) calculations and spectral analysis  (Figure 2). 
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The data collected contains information on heart (pulse) rate (HR), heart (pulse) rate variability (HRV) and tidal volume 
variability (TVV) in respiration (DR). It is the proprietary and patented coupling of these two fundamental biosignals that have 
demonstrated a unique value and clinical accuracy of this particular method of testing in the family of methods that use the 
peripheral arterial tone as the signal input to evaluate measurement of pulsatile volume changes reflecting changes in 
sympathetic tone during sleep.  

 

 
Figure 2. Cardiopulmonary Coupling. 

The SleepImage System algorithm can be computed from any source with quality recordings of heart rate and tidal volume 
variations, including the photoplethysmography signal (PPG).  The analysis integrates electrocortical, respiratory and autonomic 
interactions utilizing mathematical (Fast Fourier Transform, FFT) and frequency analysis to calculate the synchronization 
between HRV and TVV to provide numerical and visualization of sleep states and sleep pathologies (Figure 3). There are two 
key factors when evaluating strength of the coupling between the two signals: (1) the oscillation amplitude at given frequency 
and (2) the synchronization between the two signals (phase relationship).22 The Sleep Spectrogram demonstrates that there 
are clear boundaries with sleep-stage transition from parasympathetic dominance (Stable NREM-sleep or High Frequency 
Coupling (HFC)) to sympathetic dominance (Unstable NREM-sleep or Low Frequency Coupling (LFC) and Rapid Eye Movement 
(REM) sleep and wake. 1-3  

 

Figure 3. Fast Fourier Transform (FFT) 

Due to the described analysis of the parasympathetic and sympathetic driven state of the ANS during sleep, the SleepImage 
System output has demonstrated reflection of health outcomes, independent of sleep apnea, which makes SleepImage a unique 
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value proposition for clinical care for patients beyond the sleep apnea diagnosis based on drops in blood oxygenation during 
respiratory events. 

The American Academy of Sleep Medicine (AASM) practice guidelines for scoring of sleep and associated events defines two 
methods to evaluate respiration, (1) an airflow channel and an effort channel, or alternatively (2) peripheral arterial tone (pat)1 
as a surrogate for “airflow/effort”. These alternative methods are also commonly defined in insurance reimbursement policies 
for Home Sleep Apnea Testing (HSAT). 

The airflow channel is commonly recorded using a nasal pressure transducer (measuring changes in pressure of nasal airflow) 
or an oronasal thermal flow sensor (measuring differences in temperature during inhalation and exhalation). The effort channel 
is commonly recorded using respiratory inductance plethysmography (RIP) belts measuring movement of the chest and/or 
abdominal wall during breathing to evaluate lung volume changes, presented as a derived digital signal that represents a 
breathing curve. 

The peripheral arterial tone method utilizes a photoplethysmography (PPG) sensor to record the PLETH-wave to evaluate 
changes controlled by the autonomic nervous system (ANS) on the PLETH-wave during sleep. More than one technique is 
available to present respiration from the peripheral arterial tone; SleepImage uses the method described in Figure 2 above. 

Comparing the three commonly used channels to evaluate respiration (airflow, effort belts and PPG), it is best visualized from 
a sleep study using PSG that has all three sensors to evaluate respiration. Figure 4 demonstrates how the three methods 
compare in the respective raw signals and how each method provides clinical information that can be used for the same 
intended use, to evaluate respiratory events that can be manually reviewed and scored to define respiratory events. 

 

 

Figure 4. Respiratory Analysis. 

The SleepImage spectrogram’s key feature is a differentiation of non-overlapping sleep states during the sleep period (Figure 
5) which provide a clear visual of stable NREM-sleep (high-frequency coupling, HFC) and unstable-NREM sleep (low-frequency 
coupling, LFC). REM and wake have similarities (very low-frequency coupling, vLFC) but can be differentiated by incorporating 
movement signals. The CPC calculations of sleep, used with the SpO2 measurements to detect desaturation events, collectively 
create output parameters for diagnosis and management of sleep disordered breathing (obstructive and central sleep apnea) 
that can be manually scored in addition to the autoscoring output. 

 
1 Measurement of pulsatile volume changes reflecting changes in sympathetic tone. 

Airflow 

RIP belt 

PPG 



   
 

Page  11 

 

 
Figure 5. The sleep spectrogram reveals that NREM sleep has a distinct bimodal-type structure marked by distinct alternating and abruptly 

varying periods of strong high and low frequency cardiopulmonary coupling (HFC and LFC, respectively). These CPC states are separated widely in 
signal space with no overlap – that is, the boundaries are clean. 

 

The medical literature historically divided sleep into NREM- and REM-sleep, with NREM-sleep having four stages, that later were 
reduced to three stages (by combining Stage 3 and 4). Stage 3 represents “deep sleep” or “slow wave sleep” a stage where the 
brain almost exclusively produces slow delta waves. Stage 1 is usually a short period, a transition stage between wake and sleep. 
Stage 2 is defined as a state when cortical brain waves slow down and eye movements stop, but still with an occasional burst 
of faster brain waves, sleep spindles and K-complexes. How the biologic role of NREM sleep is associated with delta power is 
still unclear. Restricting such periods produces adverse consequences, similar to those of total sleep deprivation, including 
sleepiness and metabolic dysregulation. Delta power as a proportion of total EEG power is highest during the initial cycles of 
NREM sleep, and gradually decreases across the biological night and shows rebound effects after a period of sleep deprivation. 

It is important to note that CPC does not rely on the same data input streams as PSG. Rather than the primary dependence on 
PSG and interpretation of EEG morphology, CPC utilizes the physiological changes that occur with sleep via changes in the 
Autonomic Nervous System (ANS) signaled through the “lower” brain centers and networks (including thalamus, hypothalamus, 
hippocampus and brain stem), all brain centers that are highly involved in sleep regulation (Figure 1). The CPC-method 
integrates information from brain activity on ANS and changes that occur in respiration and cardiac output (changes in 
hemodynamics) to capture the ebb and flow of sleep, making traditional “sleep staging” comparison a misnomer. The CPC-
method is based on evaluating the strength of synchronization of HRV and respiration and is independent of absolute EEG 
amplitudes. The degree of CPC-synchronization dramatically changes with sleep stages, offering sleep-stage identification of 
Stable and Unstable NREM-sleep and REM-Sleep. 2,3,15 This synchronization (coupling) is most prominent in healthy children. 
Starting in adolescence, the coupling reduces but remains relatively stable across subjects through adulthood, suggesting that 
sleep regulation has a significantly stronger effect on cardiopulmonary coupling than aging. Cardiopulmonary coupling thus may 
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provide a more meaningful method to evaluate sleep in elderly adults as the method is not constrained by the dependence of 
slow wave sleep, that when measured through EEG from the cortex, shows deterioration with age. 2,3 

While PSG requires interpretation of observations (manual or automated) from EEG morphology to determine stages of NREM-
sleep (stage 1, 2 and 3) and REM-sleep, SleepImage automatically displays sleep stages based on analyzing ANS-regulation of the 
cardiovascular- and respiratory systems during sleep.  Based on CPC-analysis, sleep has a distinct bi-modal structure demonstrating 
NREM-sleep as two sleep stages, displaying distinct alternating and abruptly varying periods of strong high frequency 
cardiopulmonary coupling (HFC) as Stable sleep and low-frequency cardiopulmonary coupling (LFC) as Unstable sleep. The concept 
is supported by various biological system behaviors, like being either awake or asleep and when sleeping, being either in NREM- 
sleep (stable or unstable) or in REM- sleep (phasic- or tonic-REM).  

When comparing Stable NREM-sleep to traditional sleep staging from PSG, Stable NREM-sleep is equivalent to part of Stage 2 and 
all of Stage 3 NREM sleep derived from PSG. Research has demonstrated correlation between Stable sleep (HFC) and Delta Waves 
(deep sleep). 1-3 In this state, desirable sleep features dominate, including high vagal tone/sinus arrhythmia, high delta power, non-
cycling alternating pattern (CAP), continuous occurrence of slow oscillations (SO), blood pressure dipping, stable 
breathing/oxygenation/ventilation and scant arousals. Unstable sleep (LFC) equates to the part of NREM sleep that is unstable, 
meaning all of Stage 1 and part of Stage 2 NREM sleep. In this stage, generally less desirable features dominate, such as cyclic 
variation in heart rate, absence of blood pressure dipping, tidal volume fluctuations (with sleep apnea of a degree exceeding clinical 
thresholds), lower delta power and CAP.  REM sleep and Wake are detected and separated through SleepImage’s spectral power 
analysis (Very Low Frequency Coupling; vLFC). During REM-sleep the person is near motionless or in state of “skeletal muscular 
paralysis” where the primary mechanical motion is in the eyes. The EEG physiology of REM sleep and Wake is closely linked from 
the standpoint of EEG, with the electrooculography (EOG) as the main tool for distinguishing between the two states. SleepImage 
defines REM sleep into Stable and Unstable REM sleep based on frequency analysis of how the dominant sleep state has been 
classified as vLFC, where fragmented REM sleep is often accompanied by elevated Low Frequency Coupling. 15 

 
Figure 6. The figure above reveals the relationship between HFC and normalized delta power (blue line) during simultaneous data collection using CPC 
and PSG as discussed in the paper “Relationship between delta power and the electrocardiogram-derived CPC Spectrogram: possible implications for 

assessing the effectiveness of sleep”. Dr. Robert Joseph Thomas et al. Sleep Med.2014 Jan; 15(1); 125-131. 

During the validation of the SleepImage System’s technology, output comparison to tens of thousands of PSG sleep-recordings 
were performed and a high level of correlation with PSG sleep power mapping has been confirmed. The ebb and flow of slow 
wave power is the accepted marker of sleep drive in humans and in non-human species. Delta power measured from surface 
EEG correlates with ECG- and PPG-derived Cardiopulmonary Coupling high-frequency power (Figure 6, blue line), further 
supporting a link between cortical EEG electrical activity and brainstem-related cardiorespiratory functions. 2,3 For diagnosis of 
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SDB the SleepImage Apnea Hypopnea Index (sAHI) has a strong agreement with AHI calculated from PSG 19,23,24 and the method 
also differentiates between obstructive and central sleep apnea.  25,26 

While the SleepImage System and PSG analyze and present biological activity during sleep from different brain structures 
(Autonomic Nervous System regulation vs. Cortical Brain Wave regulation, respectively), they both reflect sleep. The two 
methods (CPC and PSG) do therefore not vary as much as it may seem at first, as is demonstrated in Figure 7. 

 

Figure 7. The relationship between conventional sleep scoring system and the Cardiopulmonary Coupling (CPC) scoring system. 

Both the SleepImage and the PSG methods are quite capable instruments to evaluate sleep, though with some important 
differences. The SleepImage System’s sleep spectrogram and the software generated biomarkers of sleep quality, the pathology 
markers as well as sleep duration, sleep time, sleep efficiency, and sleep latency, are simple to collect offering the possibility to 
enable dynamic longitudinal tracking by collecting multiple nights of data and observe intra-night variability, providing a 
practical approach to assess sleep as a vital sign of health. The SleepImage method is particularly useful to track sleep health 
over time to identify relative changes in sleep quality, and in individuals with sleep disorders, for disease management, whether 
it is for insomnia or sleep disordered breathing, obstructive sleep apnea (OSA) and central sleep apnea (CSA). The simple 
interface offers the potential to implement personalized approach into sleep medicine by treating sleep disorders as other 
chronic diseases, 27-30 with repeated testing in the patients’ natural sleep environment over multiple nights and multiple time 
points to optimize disease management and patients’ health. 6,11,17,31,32 

Further description of the Cardiopulmonary Coupling can be found in the sleep medicine textbook, Principles and Practice of 
Sleep Medicine, (Kryger – Roth – Dement) Seventh Edition, Chapter 202. Cardiopulmonary Coupling. 1 
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SleepImage Output Parameters 

Stable sleep (High-frequency coupling; 0.1-0.5Hz) is a biomarker of Stable NREM-sleep, which is characterized by stable 
breathing and oxygenation, high vagal tone, n-CAP on the electroencephalogram (EEG), continuous occurrence of slow 
oscillations (SO), high relative delta power, blood pressure dipping, and stable arousal threshold. This state may be considered 
as “effective” NREM-sleep. Effective sleep enables the desirable functions of sleep, across multiple dimensions (e.g., neuronal 
network health, metabolic, immune etc.), such that spending periods in this state enables recovery and restoration processes. 
1,2,6,15,17 

Unstable sleep (Low-frequency coupling; 0.01-0.1Hz) is a biomarker of Unstable NREM-sleep, with exactly opposite features 
when compared to stable sleep: low-frequency and tidal volume fluctuations, cyclic variation in heart rate, CAP on the EEG-
trace, low relative delta power, non-dipping of blood pressure and variable arousal thresholds. This state may be considered 
“ineffective” NREM sleep. Ineffective sleep fails to accomplish the desirable functions of healthy sleep. A subset of low-
frequency coupling is termed Elevated Low-Frequency Coupling (e-LFC) that has two subsets; an indicator of Periodicity 
(elevated low frequency narrow band; e-LFCNB) and Fragmentation (elevated low frequency coupling broad band (e-LFCBB). 
1,2,6,15,17,25 

Fragmentation (elevated low frequency coupling broad-band e-LFCBB) is a subset of low-frequency coupling during NREM-sleep 
which is an indicator of sleep pathology (e.g., pain, insomnia, anxiety) or disordered breathing patterns like Obstructive Sleep 
Apnea (OSA) and Upper Airway Resistance Syndrome (UARS). 1,10,23,25,26,33 

Periodicity (elevated low frequency coupling narrow-band e-LFCNB) is a subset of low-frequency coupling, consisting of periodic-
type breathing and heart-rate patterns that may occur during NREM and/or REM-sleep indicating sustained periods of Central 
Sleep Apnea (CSA) and periodic breathing, or "physiologic" periodicity due to Periodic Leg Movements (PLM’s) when drop in 
SpO2 is not observed. 11,23,25  

Sleep Quality Index (SQI) is a summary index of the CPC biomarkers of sleep quality, sleep stability, fragmentation, and periodicity, 
which provides a meaningful unit of measure of sleep health. The SQI is displayed on a scale of 0-100 with expected values for 
both children and adults.  The SQI is useful to track sleep health over time, whether to identify the need for further clinical 
investigation or to track therapy. The SQI is easily communicated and relatable to the patient or other lay persons, while at the 
same time being a comprehensive measure of sleep health based on clinical validation. 6,12,17,18,33 

Apnea Hypopnea Index (AHI) is an automated measure of Apnea/Hypopnea events and is FDA-cleared to aid diagnosis of Sleep 
Disordered Breathing (SDB) in both children and adults following AASM categorization (mild, moderate, severe) as summarized 
in Table 1. The SleepImage Apnea Hypopnea Index (sAHI) represents the total number of apneas (paused breathing) and 
hypopneas (periods of shallow breathing) that occur on average per hour of sleep during the sleep recording. The sAHI is 
calculated from changes in peripheral arterial tone (pat) as a result of changes in thorax pressure affecting hemodynamics 
during apneas combined with SpO2-analysis and sleep evaluation and arousal detection from the CPC-analysis. Qualified events 
are  displayed based on: (1) both 3% and 4% oxygen desaturation (2) as “Total”, “Obstructive” and “Central” events, (3) the 
sAHI, like the Apnea Hypopnea Index (AHI), reports the number of paused breathing events during the sleep period calculated 
according to the rules set by the American Academy of Sleep Medicine (AASM) guidelines for event scoring. 19,23 The severity 
indicator (normal, mild, moderate, or severe) that appears on the SleepImage report is based on AASM’s disease severity 
categorization of sleep apnea. Diagnosis of sleep apnea is based on the evaluation of patient’s medical history, clinical 
complaints and the sleep study results combined. 
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Table 1: Categorization of Sleep Apnea by American Academy of Sleep Medicine (AASM) for adults and children (events/hr.) 

 No Sleep Apnea Mild Sleep Apnea  Moderate Sleep Apnea Severe Sleep Apnea  

Adults AHI/REI < 5.0 AHI/REI ³5.0 to < 15.0 AHI/REI ³15.0 to < 30.0 AHI/REI ³30.0 

Children AHI < 1.0 AHI ³1.0 to < 5.0  AHI ³5.0 to < 10.0 AHI ³10.0 

 
Respiratory Disturbance Index (RDI) is intended to aid in the characterization of respiratory events during sleep in addition to 
sAHI. While the sAHI includes events that meet the definitions of apneas and/or hypopneas for diagnosis of OSA, AHI does not 
include arousals that do not meet the criteria for desaturations. The sRDI includes apnea- and hypopnea events and in addition 
arousals that are not related to desaturations but may disrupt sleep and cause sleep fragmentation and may therefore provide 
information for more comprehensive evaluation of respiratory disturbances during sleep. During a PSG-study, the RDI unlike 
AHI, also accounts EEG-arousals from sleep that do not meet the definitions of apneas or hypopneas. As the SleepImage system 
is not based on recording EEG brainwaves but rather cardiovascular and respiratory parameters, where presence of respiratory 
effort related arousals (RERAs) is detected from changes in the autonomic nervous system (ANS) reflecting changes in the 
sympathetic tone based on changes in heart rate acceleration (HRa) and Fragmentation (eLFCBB) without the requirement of a 
co-occurring oxygen desaturation of 3% or more. The sRDI, when put into the context of patient symptoms for SDB, may thus 
provide the clinician with additional relevant information to aid clinical evaluation of SDB and to track treatment benefit. It is 
important to understand that the sRDI detects changes in sympathetic-tone (autonomic arousal), which should be treated as a 
non-invasive surrogate measure for EEG-arousal associated with non-desaturating hypopneas and RERA’s scored during a PSG-
study. 

Sleep Apnea Indicator (SAI) is based on detecting cardiac reaction associated with prolonged cycles of oxygen desaturation, 
based on Cyclic Variation of Heart Rate (CVHR) during unstable breathing (tidal volume variability in breathing). During each 
apnea event, blood oxygen decreases and is accompanied by a physiological reaction of bradycardia and, when breathing 
resumes, a relative tachycardia; hypoxemia is thus reflected in this cardiac response and in the SleepImage output as SAI. 23,26 
CVHR can be detected during Stable NREM-sleep that often may reflect events that are typically scored as mild hypopneas but 
may also be triggered by other pathologies such as periodic limb movements (PLMS) or restless leg syndrome (RLS).  For clinical 
evaluation, it is important to consider both SAI that is likely to reflect apnea events that disturb sleep to lower the SQI, and 
CVHR that is likely to reflect milder apneas and hypopneas that may or may not disturb sleep to lower the SQI.  

Although SAI is categorically comparable  to the AHI from PSG-studies, it is based on different physiological signals and the unit 
of measure to quantify sleep apnea is different. SAI can be perceived as a severity biomarker for CPC-derived parameters of 
SDB, while the AHI is literally a prevalence measure counting events per hour of sleep. Classification of SDB utilizing the SAI is 
based on the same premise as the AHI, the common biomarker used to quantify severity of SDB, as Mild, Moderate and Severe. 
Table 2 summarizes a comparison of SAI to AHI from Polysomnography (PSG) studies at each of the severity thresholds for mild, 
moderate, and severe sleep apnea in children and adults. 

Table 2. Results of comparing automated SleepImage Apnea Indicator (SAI/CVHR) and manually scored AHI (PSG) output. 

SAI/CVHR vs AHI Mild Moderate Severe 

Agreement 

Adults 
SAI 79% 79% 87% 

CVHR 83% 81% 89% 

Children 
SAI 88% 87% 96% 

CVHR 88% 85% 94% 

When reviewing the sAHI and sRDI scores, it is recommended to consider SDB events concurrent with CPC sleep states 
(sAHISTABLE, sAHIUNSTABLE, and sAHIREM) when evaluating and determining disease category and severity. It is furthermore 
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recommended to take into consideration the pathology biomarkers of Fragmentation (associated with obstruction) and 
Periodicity (associated with periodic breathing) when interpreting the study output for diagnosis. 19,23,25 

The performance of the sAHI was validated by comparing the software generated sAHI to manually derived AHI from in-laboratory 
PSG-sleep studies, currently considered as the “reference standard”. The data were collected in prospective clinical trials that 
included both children and adults.  Additionally, in adults the sAHI was compared to respiratory event index (REI) from prospective 
clinical trials collected with Home Sleep Apnea Tests (HSAT).  All comparisons are based on disease severity categorization of sleep 
apnea based on definition by the American Academy of Sleep Medicine (AASM), Table 1.  
 
The comparison of sAHI to AHI was further based on published guidelines from the American Academy of Sleep Medicine 
(AASM), Obstructive Sleep Apnea Devices for Out-Of-Center (OOC) Testing: Technology Evaluation.34 This guidance was 
prepared to “help clinicians decide which out-of-center (OOC) testing devices are appropriate for diagnosing obstructive sleep 
apnea (OSA)” and is based on emphasizing Sensitivity and Positive Likelihood Ratio. Guidelines from the American Academy of 
Pediatricians (AAP), 35 calls for information on sensitivities, specificities and predictive values to be available for physicians to 
familiarize themselves with, before use in clinical evaluation and diagnosis of pediatric obstructive sleep apnea (POSA), this 
information is presented in Table 3. 

• Children (n=1,334) in the cohort; 39% of the children had no disease (n=518), 45% had mild sleep apnea (n=601), 9% 
moderate sleep apnea (n=123) and 7% had severe sleep apnea (n=92). 

• Adults (PSG, n=189: HSAT, n=572) in the cohort; 12% had no sleep apnea (n=102), 30% had mild sleep apnea (n=251), 
37% moderate sleep apnea (n=313) and 21% severe sleep apnea (n=173). 

 
Performance testing, comparing the two indices sAHI (CPC-output) and AHI (PSG-output), demonstrated strong correlation as 
well as significant agreement in both defining events/hour and to identify SDB categories (no-disease, mild sleep apnea, 
moderate sleep apnea, severe sleep apnea). The results are summarized in Table 3.  
 
The difference between Likelihood Ratios and Predictive Values, can be explained as follows: 34,35 
Likelihood Ratios (LR) are used to assess the value of performing a diagnostic test and is performed to determine whether a test 
result usefully changes the probability that a disease state exists. AASM guideline defines acceptable results as sensitivity of at 
least 82.5% and LR+ of at least 5 at an in-lab AHI of 5, demonstrating a 95% post-test probability of the disease based on 80% 
pre-test probability of the disease. 

Predictive Values (PV) reflect the diagnostic power of the test and depend on sensitivity, specificity, and disease prevalence, as 
well as the reporting probability of the patient being positive/negative based on a positive/negative test result. AAP does not 
have a guideline for what values are sufficient to generate passing results to diagnose a disease. 

 

 

 

 

 

 

 

Table 3. Results of comparing automated sAHI (CPC) and manually scored AHI (PSG) output. 
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sAHI vs AHI Mild Moderate Severe 

Agreement 

Adults  96.3% 90.5% 98.9% 

CI95% [.936, .990] [.863, .947] [.975, 1.000] 

Children 89.1% 95.2% 98.1% 

CI95% [.875, .908] [.941, .964] [.974, .989] 

Sensitivity 

Adults 98.7% 92.6% 95.1% 

CI95% [.970, 1.000] [.869, .983] [.835, .994] 

Children 90.7% 89.3% 91.3% 

CI95% [.887, .927] [.852, .934] [.855, .971] 

Specificity 

Adults 84.8% 88.9% 100% 

CI95% [.726, .971] [.830, .948] [.975, 1.000] 

Children 86.7% 96.3% 98.6% 

CI95% [.834, .895] [.951, .974] [.978, .992] 

Positive Likelihood Ratio 
Adults 6.52 8.33 2801 

Children 6.81 24.37 66.71 

Negative Likelihood Ratio 
Adults 0.015 0.083 0.060 

Children 0.107 0.111 0.088 

Positive Predictive Values 
Adults 96.9% 86.2% 100% 

Children 91.5% 82.4% 83.2% 

Negative Predictive Values 
Adults 93.3% 94.1% 98.7% 

Children 85.5% 97.9% 99.4% 
1 Division by zero. PLR estimated using substitution formula 

The sAHI, sRDI and SAI are indices intended to aid clinical evaluation, diagnosis, and management of sleep apnea in children, 
adolescents, and adults. The sAHI is a counter of paused breathing events during sleep using the same scale and reporting 
metrics as AHI derived from in-laboratory PSG-studies and  is reported on the same scale as the AHI from PSG-studies. The sRDI 
adds autonomic arousal detection to the sAHI. The SAI is based on cardiovascular reaction to paused breathing (CVHR) during 
unstable sleep with a scale of 0 – 100. The SAI is based on different scaling-rules than sAHI/sRDI , and they are not expected to 
have the same numerical output. 

Sleep Apnea is associated with significantly increased risk of cardiovascular- and cardiometabolic morbidity and mortality. In 
patients with cardiac autonomic dysfunction, that presents as decreased heart rate variability (HRV) and ultimately can lead to 
a fixed heart rate due to progressive dysfunction of the cardiac sympathetic nervous system. In this subgroup of patients, the 
SAI is an ineffective tool to detect apneas, as they do not exhibit the oscillatory heart rate dynamics, but the CPC e-LFC 
biomarkers (Fragmentation and Periodicity) and the sAHI/sRDI are useful biomarkers to aid in the diagnosis of SDB in this 
patient population. In patients with chronic Atrial Fibrillation (AF), the algorithm is degraded as complex patterns cannot be 
identified and the chaos of the ANS results in less meaningful CPC output, thus warranting caution in interpretation. 
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SleepImage in Sleep (Disorder) Management 

SleepImage is a simple to use and low-cost method that offers the opportunity of multi-night testing to evaluate night-to-night 
variability during the process of evaluating sleep complaints, and to track changes in sleep over time, as part of sleep health 
management. Before prescribing a study using a PPG sensor (also known as pulse oximeters), ensure that the sensor size fits the patient 
properly.  

The Sleep Quality Index (SQI) is a summary index of the SleepImage output, indicating sleep health in individuals of all ages. 
Healthy aging is accompanied by a reduction in HRV and respiratory variability, causing an expected gradual reduction of SQI 
values to be a normal part of healthy aging. While SQI values are comparable between individuals, the greatest value of the SQI 
is to track sleep quality for each individual over time.  

Night-to-night variability in sleep is recognized and this variance should be expected to increase in patients with sleep disorders 
(sleep pathology) and/or the presence of comorbidity. Differences should also be expected over time due to environmental 
conditions, lifestyle changes and behavior or other factors that can affect sleep and cause night-to-night variability in sleep. It 
is well documented in the peer-reviewed clinical literature that sleep apnea severity can vary considerably from night to night 
as has been reported in SDB-patients undergoing PSG-studies on consecutive nights or one month apart, where changes in AHI 
were observed to be in the range of 18%-65%. 36-38 When sleep disorders are suspected, it is important to treat them as other 
chronic conditions that can present different levels of symptoms over time. Measuring sleep in patients’ normal sleep 
environment over multiple nights and on multiple occasions to capture the dynamics of sleep physiology and pathology is 
important. 27-29 Capturing and mitigating the night-to-night variability respects the chronic nature of sleep disorders that should 
improve the diagnostic process, the management of the disease and patient outcomes. 39  

None of the values for the SleepImage biomarkers should be considered absolute threshold values; they are expected to be 
generally similar when using the same sensor type. Although there are no signal specific contraindications, certain conditions 
such as cardiovascular disease and arterial stiffness can reflect signal specific differences that can cause variability where it is 
normal to expect ±10% differences that can be greater for certain patients based on disease conditions. For clinical use, it is 
recommended to consistently use the same sensor type in the patient’s natural sleep environment.29 

Expected Values - Sleep Quality and Sleep Pathology 
Table 4. Expected values for CPC biomarkers are not absolute thresholds and need to be considered in context of patients’ sleep complaints, comorbidity and patient history. 
 
Expected Values Adults Children 

Sleep Quality Index (SQI) >55 >70 

Sleep Apnea Indicator (SAI) Mild / Moderate / Severe threshold markers ≥5 / ≥15 / ≥30 ≥1 / ≥5 / ≥10 

Apnea Hypopnea Index (sAHI) Mild / Moderate / Severe threshold markers ≥5 / ≥15 / ≥30 ≥1 / ≥5 / ≥10 

Respiratory Disturbance Index (sRDI) Mild / Moderate / Severe threshold markers ≥5 / ≥15 / ≥30 ≥1 / ≥5 / ≥10 

Elevated Low Frequency Coupling, Broad Band (e-LFCBB) <15 <8 

Elevated Low Frequency Coupling, Narrow Band (e-LFCNB) ≤2 0 

 

Children 

Prevalence of sleep disorders in children are high and has likely been increasing over the last 10 – 20 years. 40  At the same time 
sleep is though rarely addressed during routine pediatric visits. 41 During the preschool years (3-5 years of age) lymphoid tissue 
growth peaks, increasing the likelihood of symptoms of SDB to develop. 42 Clinical guidelines regarding diagnosis of sleep 
disordered breathing (SDB) in children, emphasize that attempts to specify severity of SDB and make treatment decisions solely 
based on the Respiratory Event Index (REI) or Apnea Hypopnea Index (AHI) and minimum oxygen saturation may lead to 
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misclassification as children often present with changes in sleep architecture and fragmented sleep. Multi-night testing will 
assist clinicians to evaluate SDB in children. 43,44  

The most common form of SDB in children is obstructive sleep disordered breathing (oSDB), characterized by abnormal 
respiratory and ventilation patterns during sleep. SDB is highly prevalent condition in children, with disease severity ranging 
from primary habitual snoring (6%-25%) to obstructive sleep apnea (OSA), diagnosed (1-4%) when apnea-hypopnea index (AHI) 
³1.0 on nocturnal polysomnography (PSG). 40 Tonsillar-hypertrophy and obesity are the most common risk factors for OSA in 
children and tonsillectomy is recommended as first-in-line therapy for children with tonsillar-hypertrophy and OSA 45. Clinical 
studies have demonstrated limited success of this surgical intervention to treat pediatric OSA, indicating the potential benefit 
for regular sleep testing in children during the years of rapid growth and development to evaluate the need for and optimal 
timing of an intervention to treat pediatric OSA. 46    

There is considerable variability in symptom presentation in children with OSA. This makes OSA difficult to diagnose and 
demands increased awareness of SDB in children among clinicians. Excessive daytime sleepiness is not a frequently reported 
symptom in children with OSA, who often present with hyperactivity, difficulty concentrating, attention- behavioral- and mood-
problems, enuresis, persistent mouth breathing with dry mouth and morning headaches. 44 47 48 

A study in healthy children suspected of OSA confirmed that 18% of children who undergo adenotonsillectomy (AT) surgery 
without objective sleep evaluation and of the children who were evaluated with PSG-sleep-study based on parent’s concern 
and preference for their child to have objective evaluation of their sleep before surgery, found that only about 45% of the 
children had OSA and might benefit from surgery. 49 Performing a surgery on a child without a need, may cause both 
unnecessary distress for the child and affect their future health prospects as well as incurring unnecessary cost for both parents 
and payers. To further complicate disease management of OSA in children, spontaneous polysomnographic improvements are 
well known and documented (46%) 50,51 as well as residual disease following surgery with less than a third of children with OSA 
achieving complete resolution with surgery. 52,53 Additionally, surgery may potentially cause both serious short-term surgical 
complications and in the long-term significantly increase delayed respiratory, allergic, and infectious sequelae. 54-56   
 
Studies looking at sleep management in pediatric care have observed a mismatch between prevalence of parents reported 
symptoms of sleep problems, including snoring, SDB and insomnia and documented diagnoses by the physician. In a study 
screening for snoring in primary care, only 38% of the children that screened positive for snoring were referred for further 
evaluation. 57 Although several screening questionnaires have been developed to identify children with OSA, they have not 
proven accurate and are rarely used. 41 Parent/caregiver reports of symptoms correlate poorly with PSG findings, and subjective 
clinical evaluation of tonsillar-size is not a reliable indicator of need for surgery or surgical success.58-61  
 
Because of age related airway growth, children in particular stand to benefit from repeated objective and clinical symptom 
evaluation over time. This symptom variability of OSA in children as well as the complexity of the disease, mandates a careful 
data-driven clinical decision-making process prior to therapy, including surgery. 62 It is furthermore important to implement 
therapy-tracking post intervention for objective evaluation with longitudinal care to improve clinical management as residual 
disease is common after AT-surgery in children. If left untreated, the disease may adversely affect the child’s neurocognitive, 
behavioral, cardiovascular and cardiometabolic health over time and their health prospects. 48,51 

Both the American Academy of Pediatrics (AAP) and the American Academy of Sleep Medicine (AASM) recommend a PSG-study 
to objectively assess and diagnose OSA in children prior to surgery, as questionnaires alone do not provide a good diagnostic 
prediction of OSA in children. 35,44 These academic guidelines to establish objective evidence of OSA prior to surgical decisions 
are though frequently bypassed.63 This may be caused by  limited access to pediatric sleep laboratories, high cost of testing with 
increased parent out-of-pocket expenses, or reported inconvenience for both the child and their caregivers.53,  
 
Diagnosis of SDB requires clinical, subjective- and objective sleep data. OSA in children is defined as AHI > 1.0/per hour of sleep. 
However, the AHI must be considered in the context of the child's health, symptoms, and daytime functional impairment to 
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most accurately assess SDB significance, severity, and impact. The fact that majority of treatment-related changes in outcomes 
of OSA in children are not causally attributable to polysomnographic resolution or changes in severity calls for additional sleep 
metrics that can be tracked over time. 64 
 
SleepImage is FDA-cleared for diagnosis of OSA in children based on the sAHI, it is low-cost, simple to use and not intrusive for 
the child. This offers the potential to measure multiple nights of sleep in the child’s natural sleeping environment to capture 
the dynamics of SDB, which may be a more appropriate method than making a therapy decision from presentation of subjective 
symptoms, clinical evaluation, and objective measure at one specific point in time. 

Adults 

The same approach for sleep management in adults is important and PSG and HSAT generally do not offer the opportunity for 
repeated testing prior to disease diagnosis or to track efficacy of therapy. Currently the ratio of undiagnosed SDB is estimated 
to be over 80% of the patient population or more than 936 million people 65 are estimated to have the disease. Long-term 
compliance on positive airway pressure (PAP) therapy is considered generally low and is problematic, as effectiveness of therapy 
is greatly dependent on consistent use. The lack of compliance may be caused by patients’ own subjective evaluation of not 
finding the benefit from therapy to outweigh the burden of the therapy or be caused by negative effects of PAP-therapy on 
sleep quality (SQI). 6,17 Sleep quality evaluation at baseline as well as repeated testing for therapy efficacy is therefore highly 
desirable for both patients and their clinicians to improve clinical management of sleep disorders. 6,17,66,67 

Only with this kind of repeated objective testing enabling dynamic longitudinal tracking and the opportunity for more 
comprehensive phenotypic profiling in both clinical management of sleep disorders as well as in design and conduct of research 
studies be fully utilized. Sleep disorder management needs to be practiced comparably to how other chronic conditions like 
diabetes or hypertension are managed. 27-30 A change in clinical protocols to this extent could have a meaningful and measurable 
positive impact on patient outcomes and on quality of research to provide insight into sleep, beyond focusing only on the 
presence of sleep apnea in both health and disease. Improvements in management of sleep disorders will only be achievable 
with access to accurate and actionable clinical sleep tests that are evidence based, simple, low-cost, scalable, and can be self-
administered in the patients’ own natural sleep environment.  

The SleepImage system offers an FDA-cleared, fully automated and rigorously validated output, that is simple to use both for 
patients and clinicians for unique insight into sleep health and sleep regulation: 8 

1) Stable sleep tracks slow wave power and results of repeated testing could provide new insights into night-to-night 
sleep homeostatic mechanism. 1,2,31 

2) Substantial overlap in symptom presentation of insomnia and OSA is documented. This advances the need for methods 
that capture data and provide output that can be used for clinical evaluation of both insomnia and OSA before making 
diagnostic decisions and initiation of therapy.  Validated sleep tests for patients with sleep complaints who currently 
are considered ineligible for PSG or HSAT testing fill a void in clinical management of sleep disorders. 31,33,68 

3) The possibility to record sleep for more than one night in the patient’s natural sleep environment should offer 
opportunity for improved clinical management of sleep disorders. Change in clinical protocols to objectively test all 
patients with sleep complaints for more than one night before any therapy is initiated could have a meaningful and 
measurable positive impact on patient’s health and quality of life, disease management and public health. 27,29,30 

Understanding the SleepImage Spectrogram 

SleepImage graphically displays the coupling of heart (pulse) rate variability (HRV) and tidal volume variability (TVV) in the Sleep 
Spectrogram. On the front-view Spectrogram, time (hh:mm) is displayed on the horizontal axis, and frequency (Hz) is on the vertical 
axis. When both data streams (HRV & TVV) are in phase (coupled/synchronized), peaks are generated on the graph to form a visual 
representation of the frequencies collected during the recording. 
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Full View Spectrogram 

The full view of the Spectrogram (Figure 8) displays the peaks and oscillation pattern of HFC (NREMStable), LFC (NREMUnstable) and 
vLFC (REM/WAKE) for the time series. The vertical axis uses frequency range 0.004Hz to 0.5Hz and time in hours on the 
horizontal axis. 

 
 

Figure 8.  Oscillations between stable and unstable sleep are expected to modulate in 30-90-minute cycles that range  
from 4-8 Cycles in an adult 8-hour healthy night’s sleep and correspond to the alternating periods of NREM and REM sleep.  

When sleep is disrupted (sleep apnea, insomnia, stress, pain and a variety of other factors), the healthy sleep rhythm is disrupted. 

 

HFC peak amplitude is in relation to the strength, and amount, of coupling or synchronization between the curves generated 
by the coupling activity. Greater coupling results in higher amplitude peaks. Low amplitude peaks result from less overlap 
between the curves generated by heart (pulse) rate variability and respiratory activity. A lack of coupling between these two 
input data streams will result in zero value and no peak generation. 

Stable Sleep or High Frequency Coupling - HFC 

Stable NREM sleep (high frequency coupling) is displayed on the Spectrogram as dark blue peaks in the frequency range of 0.1 
- 0.5Hz. Most Stable sleep occurs during part of NREM stage-2 and all of NREM stage-3, correlating with the EEG morphology 
called noncyclic alternating pattern (n-CAP) and delta waves. Stable sleep is a biomarker of integrated stable NREM sleep and 
is associated with periods of stable breathing, high vagal tone, generally a non-cyclic alternating pattern on the 
electroencephalogram, high relative delta power, physiologic blood pressure dipping, and stable arousal threshold. 

Unstable Sleep or Low Frequency Coupling - LFC 

Unstable NREM sleep (low frequency coupling) is displayed on the Spectrogram as light blue peaks in the frequency range of 
0.01 - 0.1Hz. Unstable sleep is a biomarker of integrated unstable NREM sleep, with opposite features to Stable sleep and occurs 
during NREM stage-1 and part of NREM stage-2 sleep. Unstable sleep is associated with EEG activities called cyclic alternating 
pattern (CAP), periods of fluctuating breathing patterns (tidal volume variation), cyclic variations in heart rate (CVHR), blood 
pressure non-dipping and variable arousal thresholds. Fragmented REM sleep has low-frequency coupling characteristics. 
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Wake & REM sleep or Very Low Frequency Coupling - vLFC 

Very low frequency coupling (vLFC) is displayed on the Spectrogram as orange peaks in the frequency range of 0.004 - 0.01Hz 
and represent REM sleep & wake.  

During the course of the sleep period, spontaneous shifts occur between stable and unstable sleep. Oscillations between stable 
and unstable sleep are expected to modulate in 60-90 minute-cycles ranging from 4-8 cycles for an adult’s 8-hour healthy sleep 
and correspond to the alternating periods of NREM and REM sleep (Figure 8). Disease states negatively impact this pattern. 
Healthy, stable sleep is dominated by high vagal tone, and results in characteristic heart rate variability where the heart rate 
slows down and speeds up in synchrony with regular respiration. This is normal rhythm and is associated with stable NREM 
sleep (HFC). 

The SleepImage Report & Graphics 

The SleepImage Report 
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Reviewing SleepImage Report Output 

1. Check Signal Quality. Only predominantly green signal quality should be considered for clinical decision-making. Yellow and 
Red signal should be evaluated for signal abnormalities (signal noise) or signal loss. 

2. Evaluate Sleep Quality. SQI indicates sleep health, with expected values as SQI >55 (adults) or >70 (children). SQI is a 
summary of sleep stability, fragmentation, and periodicity on a scale from 0 – 100. Sleep Efficiency is the ratio of Total 
Sleep Time divided by Sleep Opportunity and should be >85%. 

3. Evaluate Sleep Opportunity which is defined by time in bed (TIB) allocated to sleep, including Sleep Onset Latency (SOL) 
and Sleep Duration (SD). SD includes Total Sleep Time (TST) & Wake After Sleep Onset (WASO). Expected SL is generally 
defined as <30min. SD is defined by age groups. Although Insomnia cannot be diagnosed from a single night of sleep 
and needs to be combined with subjective evaluation, including daytime symptoms, SL and Sleep Efficiency (SE) are 
the most commonly used metrics to evaluate symptoms of Insomnia. For accurate SE during the sleep period, exclude 
the wake period after the last sleep period by recalculating the sleep recoding. 

4. Evaluate Sleep Apnea. The SleepImage Apnea Hypopnea Index (sAHI) and the SleepImage Respiratory Disturbance 
Index (sRDI) are intended to aid in diagnosing sleep apnea (SA) and in the characterization of respiratory events during 
sleep.  The indices are categorized as ‘Mild’; ‘Moderate’ and ‘Severe’ with values for Children for each category ≥1, 
≥5 and ≥10 respectively and for adult values for each category are ≥5, ≥15 and ≥30 respectively. Sleep Apnea 
Indicator (SAI) can indicate SA with good agreement when compared against AHI, despite being a based on 
cardiovascular reaction rather than desaturations to detect and quantify SA. Threshold values for SAI are the same as 
for sAHI/sRDI for children and adults, respectively.  

5. Review Sleep Pathology. The Sleep Pathology biomarkers are Fragmentation (e-LFCBB) indicating sleep fragmentation, 
autonomic arousals and obstructive apneas, and Periodicity (e-LFCNB) indicating central apneas. 

6. Review Sleep Stability. Stable Sleep is the most important indicator of restorative sleep that has good agreement with 
Slow Wave (Delta) Sleep from PSG-sleep recordings. Stable sleep is expected to be >50% in adults and >65% in children. 

7. Review Transition. Sleep Stability is affected by transitions to Wake and should be evaluated.  
8. Review CVHR. Evaluating CVHR events in relation to sleep stability may help clinical evaluation of apnea severity 

beyond the prevalence that is reported by the sAHI and/or sRDI that adds RERAs to the sAHI metrics. CVHR during 
Stable Sleep is excluded from calculations of the Sleep Apnea Indicator (SAI) but may indicate events typically scored 
as mild hypopnea events in PSG sleep studies and/or can be caused by periodic leg movements.  

9. Apnea Hypopnea Index (sAHI) & Respiratory Disturbance Index (sRDI). Observe the sleep stages (Stable-, Unstable- and 
REM sleep) to evaluate where sAHI is dominant and observe relationship with CVHR and how fragmentation has caused 
autonomic arousals as indicated with the sRDI. sAHI & sRDI are displayed based on 3% and 4% desaturations and 
separated to obstructive and central events in the sAHI Summary Table. Observe the relationship of SQI and sAHI/sRDI. 
Evaluate how severely sleep apnea is affecting sleep quality, the maximum, minimum and mean duration of apnea 
events and how the events affect heart rate (BPM). 

10. Review Oxygen Summary. The percentage of oxygen saturation <90%, <88%, <80% are indicators of hypoxemia severity 
during sleep, in addition to the Min, Max, and Mean SpO2 during the sleep period.  

11. Summary. The SleepImage Report automatically summarizes the key metrics from the SleepImage analysis to aid the 
Clinician in summarizing the Clinical Evaluation and recommendations for further testing and evaluation (referral of 
patient to another clinician) or therapy. 

12. Clinicians Notes. Allows treating clinicians to document signs and symptoms of sleep disorders, patient’s medications, 
and medical history and to document sleep disorder diagnosis. As additional information is gathered from multi-night 
testing, the Clinician can edit his/her Notes to reflect changes, commonly used to document treatment tracking. 
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Clinician Notes 
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Reviewing SleepImage Graphics for Associations & Patterns  

   
 

1. Signal Quality: Evaluate the signal quality during the recording period. Red may indicate signal loss and therefore the SleepImage 
algorithms may not produce clinically relevant data during these periods. If long periods of signal loss are present it is recommended 
to repeat the sleep study. 

2. Spectrogram: Review for HFC (stable sleep), LFC (unstable sleep) and vLFC (REM sleep and wake) distribution during the 
recording period, CVHR (cyclic variation of heart rate, during unstable sleep presented as SAI) and sAHI/sRDI. 

3. Hypnogram: Observe the frequency of transitions between Stable Sleep, Unstable Sleep, REM Sleep and Wake. A high number of 
transitions indicate more fragmented sleep. Healthy sleep is indicated by higher prevalence of Stable Sleep during the first third 
of the sleep period, with increased REM sleep towards the last third of the sleep period. 

4. Sleep Disordered Breathing (sAHI, sRDI): While evaluating SDB, also consider fragmentation and periodicity. Fragmentation 
indicates events that may be caused by obstructive apnea are termed e-LFCBB. Periodicity indicates metronomic activity that 
may be caused by central apnea or periodic breathing and are termed e-LFCNB. 

5. Desaturation and SpO2:  Review desaturation events and correlate in association with stable, unstable and REM sleep and look 
for concurrent CVHR.  Areas of SpO2-signal loss are often demonstrated by a large and sudden drop in SpO2.  

6. CVHR: Evaluate CVHR in association with the Spectrogram, and oxygen saturation. CVHR is a marker of changes in heart rate 
happening during and at the cessation of an apnea event. 

7. Actigraphy: Associate level of Actigraphy with concurrent events, assess any patterns across the recording period. 
8. Adjust the study period (Clinician Users): Drag the green and red markers on the orange line above the spectrogram to the 

desired beginning and end of the study and click the Recalculate button. 
9. Examine the raw data traces in the interactive graph that coincide with the timeline of the recording, concurrent events can 

be observed in increments of 10 sec., 30 sec., 1 min., 2 min. and 4 min. 
10. Toggle StableNREM, UnstableNREM and REM/Wake peaks (Clinician Users): The StableNREM, UnstableNREM, REM/WAKE 

buttons above the spectrogram can turn stable, unstable and REM/Wake peaks on and off to isolate coupling types for analysis 
of each sleep state. 
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Distinguishing Sleep Disordered Breathing Types 

Sleep Disordered Breathing (SDB) comprises a wide spectrum of sleep-related breathing abnormalities, from snoring to severe 
sleep apnea.  There are two major categories of SDB: 

1. Obstructive Sleep Apnea (OSA) is the most common type of sleep apnea and is related to increased upper airway resistance 
and closure of the airway during sleep. Patients who suffer from OSA periodically struggle to breathe and are unable to inhale 
effectively because of a blocked airway that causes oxygen levels to drop and fragments sleep causing arousals (RERAs) and/or 
awakenings. 

2. Central Sleep Apnea (CSA) is caused by the brain temporarily not sending signals to the muscles that control breathing. This 
condition often occurs in people who have certain medical problems and when not associated with another disease it is called 
idiopathic central sleep apnea. A condition, Cheyne-Stokes respiration, subtype of CSA presents similarly on the SleepImage-
Spectrogram.  

3D Spectrogram - Obstructive Sleep Apnea  

OSA causes sleep fragmentation. In addition to the sAHI quantifying obstructive events and the sRDI categorizing RERAs, the 
presence of a broad band of peaks indicates that the upper airway is the primary pathophysiological contributor to the patient’s 
sleep apnea. E-LFCBB is presented by broad gray peaks on the 3D Spectrogram (Figure 9). 

 
 

Figure 9. The 3D View Spectrogram - Obstructive Sleep Apnea shows a “broad” distribution of the peaks called 
Elevated Low Frequency Coupling broadband (e-LFCBB). 

3D Spectrogram - Central Sleep Apnea  

Central Sleep Apnea or periodic breathing is represented by narrow red colored peaks as e-LFCNB on the 3D Spectrogram view 
and identifies patterns of breathing or movement having a “narrow band” LFC profile as a visual identifier in addition to the 
sAHI quantifying central events (Figure 10). 

  
Figure 10. 3D Spectrogram - Central Sleep Apnea is presented as a line of narrow red peaks. 

The system colors these peaks red to make it easier for users to identify the periodicity. 
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Glossary 
AAP: American Academy of Pediatrics 

AASM: American Academy of Sleep Medicine 

ANS: Autonomic Nervous System 
CAP: Cyclic Alternating Pattern 

CPAP: Continuous Positive Airway Pressure 

CPC: Cardiopulmonary Coupling - the synchronization of heart (pulse) rate variability and breathing activity 

CSA: Central Sleep Apnea 

CVHR:  Cyclic Variation of Heart Rate. Heart rate pattern that happens during and at cessation of apnea events. 

DSAT:  Desaturation Events 

e-LFCBB: Elevated Low Frequency Coupling, Broad Band - an indicator of sleep fragmentation (e.g. pain) or airway disordered 

breathing patterns (e.g. Obstructive Sleep Apnea, Upper Airway Resistance. (see Understanding the SleepImage  Spectrogram) 

e-LFCNB: Elevated Low Frequency Coupling, Narrow Band - an indicator of periodic-type breathing patterns e.g. Central Sleep 

Apnea (see Understanding the SleepImage Spectrogram) 

ECG (EKG): Electrocardiogram - recording the electrical activity of the heart over a period of time 

EDR: Electrocardiogram Derived Respiration 

EEG:  Electroencephalogram - recording electrical activity of the brain along the scalp 

HFC: High Frequency Coupling – an indicator of stable sleep (see Understanding the SleepImage Spectrogram) 

HRV: Heart Rate Variability 

LFC: Low Frequency Coupling – an indicator of unstable sleep (see Understanding the SleepImage Spectrogram) 

N-CAP: Non-Cyclic Alternating Pattern 

NREM: Non-Rapid Eye Movement 

OSA: Obstructive Sleep Apnea 

PDR: Plethysmograph Derived Respiration 

PRV: Pulse Rate Variability 

PSG: Polysomnography – an in-laboratory sleep study where each 30 sec window (epoch) is manually scored. 

REM: Rapid Eye Movement  

SA: Sleep Apnea 

SAI: Sleep Apnea Indicator. Displays “one number” for apnea events through the recording period by automatically detecting 

known changes that occur in the cardiovascular system during periods of sleep disordered breathing. 

sAHI:  SleepImage Apnea Hypopnea Index 

SaMD: Software as a Medical Device 

SDB: Sleep Disordered Breathing - refers to a wide range of sleep-related breathing abnormalities 

SpO2: Oxygen Saturation 

sRDI: SleepImage Respiratory Disturbance Index 

SQI: Sleep Quality Index. Presents “one number” encompassing overall sleep health based on CPC metrics. 

Spectrogram: Visual representation of the spectrum of the frequencies of Cardiopulmonary Coupling. 

UARS: Upper Airway Resistance Syndrome 
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vLFC: Very Low Frequency Coupling – Wake/REM Sleep (see more in Understanding the SleepImage Spectrogram)  
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