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Introduction

The Sleeplmage® System is in compliance with the EU Medical Device Regulation (MDR) 2017/745 (CE 2862) and is United
States (US) Food and Drug Administration (FDA) cleared Software as a Medical Device (SaMD), K182618. The Sleeplmage
System collects simultaneous recordings of heart rate, oxygen saturation and actigraphy, with a photoplethysmography
(PPG) sensor applied at the finger to collect the plethysmography wave (PLETH) for sleep and respiratory analysis. The
following signals (channels) are continuously sampled during sleep and analyzed with the proprietary algorithm
cardiopulmonary coupling (CPC), not using Artificial Intelligence (Al): (1) changes peripheral arterial tone (pat; a
measurement of pulsatile volume changes reflecting changes in sympathetic tone and hemodynamics), (2) heart (pulse)
rate (HR/PR), (3) heart (pulse) rate variability (HRV/PRV), (4) blood oxygenation (oximetry, SpO,), (5) changes in breathing
(respiration, tidal volume variability; TVV) and (6) movement (actigraphy). All channels of raw data are presented for the
purpose of visualizing concurrent physiology and to review the autoscored respiratory events with ability for manual
scoring/analysis as determined appropriate by the user. The signal quality of the recorded raw physiological data is
documented and presented with the color-coded “Signal Quality” line.

The Sleeplmage System is FDA-cleared to aid clinical diagnosis of Sleep Disordered Breathing (SDB) in children,
adolescents, and adults. The output from the Sleeplmage System is based on cardiopulmonary coupling (CPC) analysis
to calculate various sleep related output metrics. The output metrics include sleep stages: Stable Non-Rapid Eye
Movement (sSNREM), Unstable NREM (UNREM) and REM sleep), sleep onset (SO), sleep conclusion (SC), sleep duration
(SD), total sleep time (TST), wake after sleep onset (WASQO) and a proprietary sleep quality index (SQI). The sleep
disordered breathing (SDB) related output metrics include 3% and 4% desaturation events, including a total Sleeplmage
Apnea Hypopnea Index (sAHI), an obstructive AHI (sAHlobstructive), a central AHI (sAHIcentral), hypoxic burden (HB), a
Respiratory Disturbance Index (sRDI), an Oxygen Desaturation Index (ODI), and the Sleep Apnea Indicator (SAl) that is
derived from Cyclic Variation in Heart Rate (CVHR) and does not include changes in blood oxygenation.

The Sleeplmage System is a patented, Health Insurance Portability and Accountability Act (HIPAA) compliant cloud-
based system. It is intended for use by, or on the order of a Healthcare Professional to establish sleep quality, and to aid
in the evaluation of sleep disorders to inform or drive clinical management, as well as to aid in diagnosis and management
of SDB. The Sleeplmage System is FDA-cleared/MDR-CE-marked for use with children aged 2 and older, adolescents and
adults. The validation of the Sleeplmage System utilized clinical Polysomnography (PSG) as the standard upon which it
was compared. Data presenting periods of sleep identified by both systems were compared for validation and published.
Please refer to the List of Publications which can be found on the last few pages of this document.

The Sleeplmage System is cleared for use in various countries around the world. This document is intended to be relevant
for clinical users in all countries where the Sleeplmage System is cleared for use and is intended for general educational
purposes. Forinformation on how to use the Sleeplmage System, please refer to Sleeplmage System Instructions for Use.
For information on where the Sleeplmage System is available and contact information for Sleeplmage representatives in
different countries, please contact support@sleepimage.com.


https://www.accessdata.fda.gov/cdrh_docs/pdf18/K182618.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K182618.pdf
https://sleepimage.com/wp-content/uploads/SleepImage-System-IFU.pdf
mailto:support@sleepimage.com

The Sleeplmage System Features and Benefits are summarized as follows:

Sleeplmage PSG HSAT
Asymptomatic
Symptomatic
Patient Populations

Children
Adults
Sleep Disorder Evaluation'
Sleep Disorder Screening

Types of Testing OSA Diagnosis in Children
OSA Diagnosis in Adults
Treatment Tracking?
Sleep Quality
Sleep Duration

Test Output

NREM & REM Sleep
Phenotype OSA vs. CSA3

" To evaluate clinical symptoms of Insomnia or Sleep Apnea, 2 To track if treatment is improving objective sleep parameters
3 OSA = Obstructive Sleep Apnea; CSA = Central Sleep Apnea

For the purpose of diagnosing SDB, the US FDA-clearance for Sleeplmage states the following: “Clinical evaluation has
confirmed that the Sleeplmage System auto-scoring algorithms calculating the Sleeplmage Apnea Hypopnea Index
(sAHI) generate comparable output to human manual scoring of an Apnea Hypopnea Index (AHI) from Polysomnography
(PSG) studies, using American Academy of Sleep Medicine (AASM) scoring guidelines for children and adult patients.”



The Sleeping Brain & Body

Good sleep quality is crucial for good physical and mental health. One of the key benefits of using the Sleeplmage System
in clinical practice is that unlike most clinical home sleep measurements systemes, it is not restricted to evaluate only
SDB but includes evaluation of sleep states, sleep stages and a proprietary sleep quality index (SQI). Sleeplmage is a
comprehensive measure of physiology during sleep, based on collecting and analyzing signals controlled by the
autonomic nervous system (ANS), reflecting changes in hemodynamics and breathing. (Bartsch et al., 2012; Penzel et
al., 2016; Thomas, 2016; Thomas et al., 2014)

Sleep is controlled in the midbrain and during sleep signals are sent to both the surface of the brain and to peripheral
organs allowing sleep to be measured through (1) changes in the Central Nervous System (CNS), using changes in
brainwaves measured with electroencephalographic (EEG) signals to estimate sleep states and stages by utilizing
Polysomnography (PSG) and/or (2) changes in the ANS-output by recording changes in heart rate and breathing that
change with sleep depth, which allows for estimation of sleep states and sleep stages (Figure 1).
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Figure 1. Changes in brain- and peripheral activity during sleep.

Autonomic neural controlin sleep regulation refers to how the ANS —which governs involuntary bodily functions like heart
rate (HR), heart rate variability (HRV) and breathing which significantly impacts sleep cycles by adjusting physiological
activity coherent to different sleep states and stages, thereby contributing to the overall quality and stability of sleep
(Figure 2). The ANS is regulated in totally different ways during wakefulness, lighter sleep stages, deep sleep- and dream-



sleep (Somers et al., 1993). The lowest activity of the sympathetic nervous system (SNS) is observed during deep sleep
and is associated with predominant activity of the parasympathetic nervous system (PNS). During dream sleep increased
activity is observed in the sympathetic branch. Recording changes in the ANS through changes in cardio-reparatory
function (HR/HRV and breathing) during sleep provides sleep state and staging providing sleep disorder diagnostic
information (Bartsch et al., 2012; Penzel et al., 2016).
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Figure 2. The sympathetic- and parasympathetic branches of the autonomic nervous system.

The interplay between sleep and cardiovascular activity has been investigated using non-invasive methods including
HRV with time-domain and/or frequency-domain analysis to identify ANS modulations in sleep. (Penzel et al., 2016)
Recording HR/HRV and changes in breathing is simpler to record when compared to EEG, EOG and EMG due to larger
signal amplitude and much better signal to noise ratio, requiring less sophisticated amplifiers. Consequently, and
based on knowledge of the underlying physiology of the ANS, recording HR/HRV became highlighted as a candidate to
record and compute data for studying sleep and diagnosing sleep disorders that could serve as a simple surrogate
method to sleep recordings from the skull with EEG, EOG and EMG (Penzel et al., 2016).

Respiratory Sinus
Arrhythmia (RSA)

Cardio-Respiratory
Phase Synchronization
(CRPS)

Figure 3. The relationship between changes in heart rate and breathing during respiratory sinus arrhythmia (RSA) and cardio-respiratory phase
synchronization (CRPS).



Regulation in breathing and heartbeats changes from wake to light sleep, to deep sleep and dream sleep, as these bio-
signals are intimately coupled but very different during wake and the different sleep states and stages. The best studied
mechanisms of this cardiopulmonary coupling are: 1) respiratory sinus arrhythmia (RSA) that describes the respiratory-
gated fluctuation of heart rate: during inspiration heart rate increases and during expiration it decreases and 2) Cardio-
Respiratory Phase Synchronization (CRPS) can occur without RSA. During CRPS heartbeats occur more often during
some phases of the respiratory cycle, e.g., at the beginning of inspiration, at the end of inspiration and in middle of
inspirations. CRPS is most prominent during deep sleep (Figure 3) (Bartsch et al., 2012).

Sleep Architecture, Sleep States and Sleep Stages

Significant progress has been made to better understand sleep and sleep mechanisms since the release of the “Manual
of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects” in 1968 (Allan
Rechtschaffen, 1968). In the past, most studies have been focused on the link between electrophysiological events of
the central nervous system (CNS) during sleep electroencephalography (EEG), while dynamic shifts in autonomic neural
control through the ANS during sleep and ANS-dynamics can be recorded and interpreted in a similar way to derive sleep
states and sleep stages as the EEG-waves are utilized to derive sleep stages of non-rapid eye movement (NREM) sleep
and rapid eye movement (REM) sleep. Until more recently ANS-based sleep staging has, to a certain degree, been
overlooked (Bakker et al., 2021; Bartsch et al., 2012; Chen et al., 2022; Cysarz et al., 2004; Penzel et al., 2016; Thomas
et al., 2005; Tsai et al., 2022)

CardioPulmonary Coupling (CPC)
is a rule-based method describing
REM- and NREM-sleep with NREM-

‘ = sleep presented ad bimodal into
. M Moz ',Lv.& ‘4 m 24 Stable- and Unstable-NREM sleep
= T ; based on coupling and coherence of
ia= . o pulse rate variability (PDR) and tidal
[ Y ¥ 'M_.‘ : Wéb ,u‘l‘d ;.wa. i B volume variability (TVV) during the

———t— 1 sleep period.

[—{ CAP Sequence l—’ Cyclic Alternating Pattern (CAP)

is a rules-based method describing
how to score NREM-sleep based
on sleep instability/stability. The
CAP-method was first published

in 1985, with the detailed technical
procedures and scoring rules
published in 2001.

Awake NREM sicep REM siesp Visual Scoring initially formalized

1 a4 by Rechtschaffen and Kales in 1968
and later updated by the American
Academy of Sleep Medicine (AASM)
in 2007 is a method describing the

rules for how to score sleep into
REM- and NREM-sleep states and
differentiate between the different
stages NREM-sleep stages.

Figure 4. Comparison of methods to classify sleep states and sleep stages, (1) cardiopulmonary coupling (CPC), (2) cyclic alternating pattern
(CAP) and (3) scoring of the brain’s electrical activity (EEG).



Sleep architecture and classification of sleep into sleep states and sleep stages is used to investigate the duration,
quality of sleep, and the structure of the sleep cycles during the night. The most common method to classify sleep states
and sleep stages is based on identifying changes in brainwaves recorded with an electroencephalogram (EEG) during a
polysomnography (PSG) sleep study. PSG is a multi-sensor recording system of various physiological signals including
EEG, electrooculogram (EOG) and electromyogram (EMG), airflow, arterial oxygen saturation (SpO2), and respiration
during sleep.

Sleep staging in the PSG-system is based on cyclic alternation of two major and distinct neurophysiological states: (1)
Rapid Eye Movement (REM) sleep, where EEG desynchrony is the dominant feature and there is a sympathetic
dominance in the ANS and (2) Non-REM (NREM) sleep that is further differentiated into NREM-stage-1, NREM-stage-2
and NREM-stage-3. EEG synchrony grows with increasing sleep depth and parasympathetic influence is dominant during
NREM-stage-3 sleep during when slow wave sleep (SWS) is high. NREM-stage-3 is a restorative sleep state that is known
to facilitate cognitive function and memory consolidation and is associated with endocrine secretion and adaptive
immune response. The alternating pattern of NREM and REM sleep constitutes the sleep cycle, and its recurrence during
the night determines the classical stepwise sleep profile (macrostructure). There are two methods described and
published on how to approach sleep-stage classification from EEG which are presented in Figure 4 above.

Visual Scoring initially formalized by Rechtschaffen and Kales in 1968 (A. Rechtschaffen, 1968), and later updated by the
American Academy of Sleep Medicine (AASM) in 2007 (Iber & Medicine, 2007); it is a method describing with rules how
to score sleep into REM- and NREM-sleep states and differentiate between the different NREM-sleep stages.

Cyclic Alternating Pattern (CAP) is also a rules-based method describing how to score NREM-sleep based on sleep
instability/stability. The CAP-method was first published in 1985 (Terzano et al., 1985), with the detailed technical
procedures and scoring rules published in 2001 (Terzano et al., 2001). The presence or absence of CAP provides useful
insights into sleep stability. The CAP cycle is defined as a sequence of two alternating stereotyped EEG patterns, (phase
A and phase B) each lasting more than 2 seconds and less than 60 seconds. CAP is the EEG defined marker of sleep
instability i.e., unstable sleep and which is enhanced when sleep is disturbed ty internal or external factors (Parrino et
al., 2012).

Cortical sleep staging is based on convention rather than its clinical relevance over ANS sleep staging and more recent
experimental and clinical evidence suggests a noteworthy activation of different biological systems where the key role is
played by the ANS (Tobaldini et al., 2013). Increasing body of evidence is surfacing that the ANS, long recognized to
modulate cognition during wake, can impact memory processing during sleep in patients with mild cognitive impairment
(MPI) (Whitehurst et al., 2022) who are more vulnerable to sleep related parasympathetic dysfunction (Kong et al., 2021)
and that increased sympathetic activity during sleep increases risk of metabolic disease (Magnusdottir, Thomas, et al.,
2021; Nevels et al., 2023) demonstrating that ANS sleep staging has, in research, shown to correspond to functional
outcomes.

Cardiopulmonary Coupling (CPC)

In 2005 Thomas et al., published a method developed to evaluate sleep states and sleep stages based on
cardiopulmonary coupling (CPC), analyzing heart (HRV) or pulse (PRV) rate variability (e.g., RR interval time series) as
well as fluctuations in R-wave amplitude induced by respiration to detect changes in breathing (TVV, tidal volume
variability); bio-signals which are highly influenced by the ANS (sympathetic and parasympathetic influence) and is the
core of the Sleeplmage System (Thomas et al., 2005). For CPC- sleep state and state stage evaluations the method
calculates the cross spectral power and coherence of the RR-time series and corresponding TVV-time series which are
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calculated for consecutive windows to analyze coherence and cross-spectral power which is used to obtain the ratio of
coherent cross power in the low frequency band (LFC, 0.01-0.1 Hz) to that in the high-frequency band (HFC, 0.1-0.4 Hz).
When evaluating the synchronization between the two signals, there are two key factors to observe: (1) Coupling: The
oscillations in the signals at given frequency (amplitude relationship), and (2) Coherence: the synchronization of the
signals at given frequency (phase relationship).

Cardiopulmonary Coupling=
[ Cross-Spectral Power ]* X [ Coherence ]

Heart | | | Tidal
Rate A\JL Volume
Variability s '

Variability

Cross-Spectral Power

Coherence

Figure 5. Cardiopulmonary Coupling (CPC).

The Sleeplmage System algorithm can be computed from any source with quality recordings of HRV/PRV and TVV,
including a photoplethysmography (PLETH) signal that meet the defined data acquisition characteristics. Once a sleep
study has beenrecorded and uploaded, the PRV is calculated, ectopic beats and outliers identified, filtered, and removed
and normal sinus (N-N) intervals are extracted, TVV is obtained by using R-S wave amplitudes and variations in the QRS
complexes area and baseline changes and Fast Fourier Transform is applied (Figure 6) (Thomas et al., 2005).

VWAV

«——— RESPIRATION

FFT

Frequency

Figure 6. Fast Fourier Transform (FFT)

The degree of CPC coupling/coherence dramatically changes with the sleep states and stages, offering the capability to
evaluate sleep and report on sleep duration, sleep onset (SO), sleep conclusion (SC), total sleep time (TST), wake after
sleep onset (WASO) and differentiate between sleep states and sleep depth (Thomas et al., 2005; Thomas et al., 2014;
Wood et al., 2020). This synchronization (coupling/coherence) is most prominent in healthy children as expected, as
sleep depth/delta waves and non-CAP are most prominent in healthy children. In healthy individuals, CPC-
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synchronization shows a low intraindividual variability from night-to-night. Starting in early adolescence, the
synchronization gradually reduces but remains relatively stable across subjects into early adulthood when it starts to
gradually decline with age as do the EEG-produced delta-waves and sleep instability on CAP-increases. Inter-individual
variation (standard deviation) of sleep parameters needs to be kept in mind when evaluating sleep stability/instability
that is explained by both the individual sleep trait and the individual health status.

Bimodality of NREM sleep

Data from in-laboratory polysomnography studies was analyzed to develop the CPC-method where Thomas et al.,
described their findings of a bi-modal structure of NREM-sleep as two sleep stages, displaying distinct alternating and
abruptly varying periods of strong High Frequency Cardiopulmonary coupling (HFC, 0.1-0.5Hz) as Stable NREM-sleep and
Low Frequency Cardiopulmonary coupling (LFC, 0.001-0.1 Hz) as Unstable NREM-sleep (Thomas et al., 2005). This is
seen in the Sleep Spectrogram that demonstrates clear boundaries with sleep-stage transition from parasympathetic
dominance (Stable NREM-sleep) to sympathetic dominance (Unstable NREM-sleep) and REM-sleep and Wake (very low
frequency coupling (VLFC), <0.001Hz) (Haitham S. Al Ashry et al., 2021; Bartsch et al., 2012; Thomas, 2016; Thomas et
al., 2005; Thomas et al., 2014; Wood et al., 2020). The concept is supported by various biological system behaviors, like
being either awake or asleep and when sleeping, being eitherin NREM- sleep (stable or unstable) orin REM- sleep (phasic-

or tonic).

(1) Stable NREM-sleep (HFC) relates to a global condition of stability when all the subsystems that control and influence
the sleep mechanisms are balanced. Stable NREM-sleep is characterized by stable breathing and stable oxygenation,
high vagal tone, non-cyclic alternating pattern (n-CAP) on EEG, continuous occurrence of slow oscillations, high delta
power, blood pressure dipping and stable arousal threshold. This state may be considered as “effective” NREM sleep.
Effective sleep enables the desirable functions of sleep across multiple dimensions (e.g., neuronal networks,
cardiovascular, metabolic, immune etc.), such that spending periods in this state enable recovery and restorative

processes.

0.
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Stable NREM-sleep (HFC) correlates with EEG-derived Delta-waves and non-CAP [6, 7]

CPC Freq (Hz) 0

. £ = 4

Figure 7. The sleep spectrogram reveals that NREM sleep has a distinct bimodal-type structure marked by distinct alternating and
abruptly varying periods of strong high and low frequency cardiopulmonary coupling (HFC and LFC, respectively). These CPC states are
separated widely in signal space with no overlap - that is, the boundaries are clean.
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(2) Unstable NREM-sleep (LFC) is a marker of sleep instability. Unstable NREM-sleep has opposite features when
compared to Stable NREM-sleep, with tidal volume variability (TVV), cyclic variation in heart rate (CVHR), CAP on EEG,
low relative delta power, non-dipping of blood-pressure and unstable arousal thresholds. This state may be considered
as “ineffective” NREM sleep. Ineffective sleep fails to accomplish the desirable functions of healthy sleep. As Unstable
NREM-sleep is a highly sensitive but non-specific index, it cannot reveal the nature of perturbation, only the existence. A
certain amount of Unstable NREM-sleep should be expected as this is a state that includes transitions from other sleep
stages, however, excessive duration of Unstable NREM-sleep certainly indicates that one or more factors are interfering
with the process of sleep consolidation and quantifies the magnitude and thus may prohibit sleep to perform its task of
health promotion and maintenance.

The CPC-based sleep state classification in the Sleeplmage System is not limited to the finding of a single event (e.g.,
isolated arousal), as it identifies patterns of Stable vs. Unstable NREM-sleep. The Sleeplmage System translates a
physiological state that involves autonomic function, cerebral activities, and behavioral features into sleep
architecture/sleep stages. In other words, what happens physiologically at “upper levels” (brain/CNS) is reflected at
“lower levels” (ANS) and vice versa (Figure 7).

Unlike EEG-based manual scoring, CPC-sleep staging is performed in the frequency domain vs the time domain analysis
of EEG. Thus, CPC offers a fully automated analysis that only needs a qualified healthcare provider to review the recorded
channels for signal quality, recording time, sleep state and stage outputs including sleep onset, sleep offset, wake after
sleep onset and total sleep time. The respiratory-event scoring can however be modified, when needed, to determine the
type, pattern severity and features of respiratory events and the automatically scored events can be removed, edited
and/or added as/if needed.

Sleep State Classification, Cardiopulmonary Coupling & Polysomnography

The medical literature historically divided sleep into NREM- and REM-sleep, with NREM-sleep having four stages, that
later were reduced to three stages (by combining Stage 3 and 4). Stage 3 represents “deep sleep” or “slow wave sleep” a
stage where the brain almost exclusively produces slow delta waves. Stage 1 is usually a short period, a transition stage
between wake and sleep. Stage 2 is defined as a state when cortical brain waves slow down and eye movements stop,
but still with an occasional burst of faster brain waves, sleep spindles and K-complexes. How the biologic role of NREM
sleep is associated with delta power is still unclear. Restricting such periods produces adverse consequences, similar
to those of total sleep deprivation, including sleepiness and metabolic dysregulation. Delta power as a proportion of total
EEG power is highest during the initial cycles of NREM sleep and gradually decreases across the biological night and
shows rebound effects after a period of sleep deprivation.

Itis important to note that CPC does not rely on the same data input streams as PSG. Rather than the primary
dependence and interpretation of EEG morphology as PSG, CPC utilizes the physiological changes that occur with
sleep via changes in the ANS signaled through the “lower” brain centers and networks (including thalamus,
hypothalamus, hippocampus and brain stem), all brain centers that are highly involved in sleep regulation (Figure 1).
The CPC-method integrates information from brain activity on ANS and changes that occur in respiration and cardiac
output (changes in hemodynamics) to capture the ebb and flow of sleep, making traditional “sleep staging”
comparisons a misnomer. The CPC-method is based on evaluating the strength of coherence/coupling of HRV and
respiration and is independent of absolute EEG amplitudes. The degree of CPC dramatically changes with sleep states
and stages, offering identification of sleep states and sleep stages (Bartsch et al., 2012; Thomas et al., 2014; Wood et al.,
2020). This coupling/coherence is most prominent in healthy children, then in early adolescence starts to decline with a
continuum of gradual decline throughout the lifespan (Figure 7).

While PSG requires interpretation of observations (manual or automated) from EEG morphology to determine stages of
NREM-sleep (stage 1, 2 and 3) and REM-sleep, Sleeplmage automatically displays sleep stages based on analyzing ANS-
regulation of the cardiovascular- and respiratory systems during sleep.
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When comparing Stable NREM sleep to traditional sleep staging from PSG, Stable NRE-sleep is equivalent to part of Stage
2 and all of Stage 3 NREM sleep derived from PSG. Research has demonstrated correlation between Stable sleep (HFC)
and Delta Waves (deep sleep) (Bartsch et al., 2012; Thomas, 2016; Thomas et al., 2014). In this state, desirable sleep
features dominate, including high vagal tone/sinus arrhythmia, high delta power, non-cycling alternating pattern (CAP),
continuous occurrence of slow oscillations (SO), blood pressure dipping, stable breathing/oxygenation/ventilation and
scant arousals. Unstable sleep (LFC) equates to the part of NREM sleep that is unstable, meaning all of Stage 1 and part
of Stage 2 NREM sleep. In this stage, generally less desirable features dominate, such as cyclic variation in heart rate,
absence of blood pressure dipping, tidal volume fluctuations (with sleep apnea of a degree exceeding clinical
thresholds), lower delta power and CAP. REM sleep and Wake are detected and separated through Sleeplmage’s
spectral power analysis (Very Low Frequency Coupling; vLFC). During REM-sleep the person is near motionless or in state
of “skeletal muscular paralysis” where the primary mechanical motion is in the eyes. The EEG physiology of REM sleep
and Wake is closely linked from the standpoint of EEG, with the electrooculography (EOG) as the main tool for
distinguishing between the two states. Sleeplmage defines REM sleep into Stable and Unstable REM sleep based on
frequency analysis of how the dominant sleep state has been classified as vLFC, where fragmented REM sleep is often
accompanied by elevated Low Frequency Coupling (Figure 7), (Wood et al., 2020).

During the validation of the Sleeplmage System’s technology, output comparison to tens of thousands of PSG sleep
recordings were performed and a high level of correlation with PSG sleep power mapping has been confirmed. The ebb
and flow of slow wave power is the accepted marker of sleep drive in humans and in non-human species. Delta power
measured from surface EEG correlates with ECG- and PPG-derived Cardiopulmonary Coupling high-frequency power
(Figure 8, blue line), further supporting a link between cortical EEG electrical activity and brainstem-related
cardiorespiratory functions (Bartsch et al., 2012; Thomas et al., 2014).

Norm . Delta Power
(Hz)

Freq. (mHz)

Figure 8. The figure above reveals the relationship between HFC (white peaks) and normalized delta power (blue line) during simultaneous data
collection using CPC and PSG as discussed in the paper “Relationship between delta power and the electrocardiogram-derived CPC
Spectrogram: possible implications for assessing the effectiveness of sleep” (Thomas et al., 2014).

Restorative sleep depends on sleep duration, sleep depth and sleep continuity, as well as the capacity of the brain to
create periods of sustained sleep stability (Stable NREM-sleep, NREM-3). Stability is not confined to EEG activity only but
reverberates upon the ongoing EEG- and ANS-activity, which are mutually entrained and allow for utilizing the oscillations
in PRV and TVV for estimation of sleep stages.
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Stage |
Falling asleep
Drifting in and out of sleep
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Low Frequency Coupling Cycling Alternating Pattern
Unstable sleep - Sleep Instability
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Stage 2
Brain waves slow down
Bursts of faster brain waves
Eye movement stops
High Frequency Coupling Non-Cyclic Alternating Pattern
Stage 3 - Stable sleep - Sleep Stability

Deep sleep Longer consolidated periods

Slow wave sleep

Rapid Eye Movement ﬁ Very Low Frequency Coupling
- Slow wave sleep < - Spectral Power Analysis

Figure 9. The relationship between conventional EEG-sleep scoring system (PSG/GAP) and the Cardiopulmonary Coupling (CPC).

PSG primarily depends on EEG morphology, whereas CPC utilizes the physiological changes that are triggered by
subcortical brain centers and signaled through the ANS. The CPC-method integrates information from “Upper-levels or
brain activity” through ANS-signaling on “Lower-levels or cardiovascular and respiratory”, respiration (changes in
breathing, TVV) and the cardiovascular system (changes in hemodynamics, PRV) to capture the ebb and flow of sleep.
Observing the coherence/coupling between the cardiovascular- and respiratory systems during sleep when there are
minimum environmental stimuli that can affect the ANS as happens during wake, allows for measures of sleep and sleep
staging (Bartsch et al., 2012; de Chazal & Sadr, 2016; Thomas, 2016; Thomas et al., 2014). The two methods (CPC and
PSG) are quite capable instruments to evaluate sleep, though with some important differences, gne do therefore not vary
as much as it may seem at first, as is demonstrated in Figure 9.

CPC-based sleep staging follows CAP-scoring closely (kappa >0.75). Unstable sleep (LFC) is associated with CAP and
Stable sleep (HFC) is associated with non-CAP (Parrino et al., 2012; Thomas et al., 2005). Despite the reliability of CPC-
based CAP detection, a tighter correlation between the two methods would not be expected as the time scales are
different. To be scored as CAP, phasic EEG-activity should occur within 60 seconds (Parrino et al., 2012) when CPC-
scoring is based analyzing the signals for windows of 8.5-minutes (Thomas et al., 2005). Both CAP and Unstable NREM-
sleep (LFC) increase when sleep is disturbed by internal or external factors. CAP and Unstable NREM-sleep reflect
subjective sleep quality, with higher CAP and Unstable NREM-sleep objectively relating to health outcomes,
demonstrated as poorer sleep quality (lower SQI) as measured by CPC using the Sleeplmage System:

(1) Blood pressure dipping occurs only during periods of Stable NREM-sleep (Wood et al., 2020), which is consistent
with the demonstration that non-CAP is the EEG correlate of blood pressure dipping (lellamo et al., 2004).

(2) Increasing Stable NREM-sleep improves blood pressure control (Magnusdottir et al., 2020), and increases
adiponectin levels (Magnusdottir, Thomas, et al., 2021).

(3) Unstable NREM-sleep is associated with hypertension and stroke (Thomas et al., 2009) and decreases with
successful therapy et al., ; Lee et al., ; Magnusdottir et al., 2020; Magnusdottir, 2021.

(4) Unstable NREM-sleep and CAP is increased in patients with obstructive sleep apnea (OSA), and Stable NREM-sleep
is reduced in patients with fibromyalgia syndrome (Thomas et al., 2010).
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(5) Unstable NREM-sleep and CAP are increased in depression (Farina et al., 2003; Yang et al., 2011), and in insomnia
(Terzano et al., 2003; Thomas et al., 2018).

(6) Unstable NREM-sleep and CAP, negatively affect cognition and behavior in children (Magnusdottir, Hilmisson, et al.,
2021; Magnusdottir et al., 2022; Parrino et al., 2012) .

(7) Children with higher Stable NREM-sleep have better cardiovascular- and metabolic-health (Hilmisson, Lange, &
Magnusdottir, 2019; Magnusdottir et al., 2022) and memory recall (Yuanjie, Yunxiao, Thomas, Yufen, et al., 2025).

Changes in Sleep Architecture Over the Lifetime

Sleep reflects the physiological changes that accompany the different ages of the lifespan. In particular, slow wave sleep
(SWS) dominates during the younger decades in contrast to lighter NREM sleep states which increase with the aging
process. As well as conventional measures, CAP/non-CAP and CPC-calculated parameters undergo dynamic changes
across the lifespan. Age-related values of NREM/REM-sleep stages, CAP and CPC-calculated parameters of sleep
stability/instability, have been measured and defined to establish the physiological ranges of sleep quality for different
age.

Age related trends for stage 1-sleep, stage 2-sleep, slow wave sleep (SWS),
rapid eye movement sleep (REM) and sleep latency (left)?® and trends in the

sleep quality index (SQI) (right) along the lifespan.
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Figure 10. Age related trends ins sleep stages evaluated from Rechtschaffen & Kale scoring, cyclic alternating pattern scoring (CAP) and scoring
utilizing cardiopulmonary coupling.

Everyone sleeps and sleep is an important modulator of various biological functions. Sleeplmage is a tool that can
enhance clinical practice across all medical specialties. Prior to the onset of a chronic disease, symptoms may be
present, and prior to symptoms there are reflections of changes in ANS regulation that are not obvious but can be
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measured. The sleep period, on average, represents one third of a person’s life and getting sufficient good quality sleep
at the right circadian times is vital for good health and wellbeing. During sleep, muscles and tissues are rebuilt,
neuroendocrine- and metabolic functions are regulated, information collected during the waking hours are reorganized
and consolidated for learning and memory consolidation, and the immune system is strengthened (Rasch & Born, 2013;
Schmidt, 2014). These benefits of sleep can only happen when sleep is dominated by parasympathetic activity (the restful
part of the sleep period facilitating good quality sleep). The Sleeplmage output clearly distinguishes between
parasympathetic and sympathetic dominance and presents the output as ‘Stable’ and ‘Unstable’ NREM-sleep reflecting
sleep health. That is why Sleeplmage brings value beyond the focus on diagnosis of SDB.

During the past two decades, multiple papers have been published that have utilized the CPC-method to evaluate sleep
stages as well as sleep disorders which have demonstrated that the 2 distinct (bimodal) regimes demonstrate a closer
relationship with visual cyclic alternating pattern (CAP) and non-cyclic alternating pattern (non-CAP) states (Terzano et
al., 1985; Terzano et al., 2001) than with standard sleep stages (Thomas et al., 2005), and regardless of different
definitions of the duration of scoring windows (CPC 2.1-min vs. PSG 30 sec) tight temporal relationship between slow
wave power, both within and outside conventional SWS periods, and high frequency cardiopulmonary coupling (HFC), a
biomarker of “stable” NREM-sleep is observed (Thomas et al., 2014). Alterations in cardiac autonomic drives (HRV and
breathing) during sleep may not be a product of sleep derived from EEG but rather from the ANS as changes in HRV are
ahead of SWS-activity with a time lag of 1-5 minutes (Rothenberger et al., 2015) and stable-NREM sleep calculated from
CPC appears on average 4.27 minutes ahead of SWS-activity (Thomas et al., 2014)

In adults, the method has been utilized in research to quantify sleep quality/stability and sex-specific changes with aging
(Tam et al., 2024) in different occupational and patient populations (Chen et al., 2018; Chien et al., 2013; Christian et al.,
2021; Hou et al., 2024; Hu et al., 2024; Liu et al., 2024; Pawar R., 2022; Seo et al., 2020; Thomas et al., 2010; Wang et al.,
2023); how changes in sleep stability affects cardiovascular and cardiometabolic markers (Magnusdottir et al., 2020;
Magnusdottir, Thomas, et al., 2021; Pogach et al., 2012; Sivam et al., 2021), and the relationship with brain health (Tang
et al., 2024; Thomas, 2021; Zhang et al., 2021). The method has also been used in research to evaluate sleep stability
and insomnia severity (Thomas et al., 2018; Yang et al., 2011); changes in insomnia severity over multiple nights
(Schramm et al., 2013); changes with treatment (Wu et al., 2021); the relationship to cognitive deterioration in insomnia
patients (Ran et al., 2024; Zhang et al., 2021); in comorbid insomnia and obstructive sleep apnea (COMISA) (Hilmisson,
Sveinsdottir, et al., 2019) and Idiopathic Hypersomnia (Pawar R., 2022). Changes in sleep stability/sleep quality have
been documented to evaluate response to treatment with cognitive behavioral therapy (Schramm et al., 2016; Sylvia et
al., 2014); tai chi in patients with chronic heart failure and depression (Ma et al., 2018; Yeh et al., 2008), to medications
(Schramm et al., 2014; Sun et al., 2019; Wu et al., 2020) and catheter ablation in atrial fibrillation (Kim et al., 2020).
Changes in sleep quality/stability have also been evaluated in patients with obstructive sleep apnea (OSA) treated with
mandibular advancement device therapy (Lee et al., 2014), with CPAP therapy (Cho & Kim, 2017; Lee et al., 2016; Ni, Lei,
Tang, Liang, Hilmisson, et al., 2024) and surgery (Choi et al., 2015).

In children, sleep quality/stability decreases during late childhood and adolescence (Cysarz et al., 2018) and during
adolescence boys have lower sleep stability/sleep quality and sleep efficiency than girls, reflecting similar findings that
have been documented in PSG studies (Magnusdottir et al., 2024). Sleep quality/stability varies based on severity of
sleep disordered breathing (SDB) (Seo et al., 2021) and improves after successful adenotonsillectomy surgery (eAT) (Lee
et al., 2012). Children who have mild OSA and high sleep-quality have better cardiovascular and cardiometabolic health
(Hilmisson, Lange, & Magnusdottir, 2019) and are more likely to have spontaneous resolution of their disease at follow-
up after watchful waiting. This group also has better attention, executive function and quality of life at baseline
(Magnusdottir, Hilmisson, et al., 2021) and are less likely to benefit from eAT (Magnusdottir et al., 2022). Good sleep
quality in childhood also facilitates memory and learning (Yuanjie, Yunxiao, Thomas, Tangyufen, et al., 2025).
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Sleep Apnea Detection in the Sleeplmage System

The Sleeplmage® System analyzes photoplethysmography (PPG) sensor to detect peripheral arterial tone (PAT). PPG is
a non-invasive optical technique that detects blood flow and other cardiovascular information through changes in light
absorption in the arterial bed of the finger. PPG is used to measure: (1) Plethysmography-waveform (PLETH) that
corresponds to blood volume variations/fluctuations in the cardiovascular system and (2) SpO. (Figure 11).
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Figure 11. Photoplethysmography (PPG) sensor including the light source (LED) and the light receiver (PD), transmission mode.

The PLETH-waveform provides information on: (1) Blood flow/blood pressure changes affected by changes in breathing
(work of breath-to-breath) and intrathoracic pressure, (2) Respiration and (3) Heart rate and heart rate variability (Figure
12).
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Figure 12. The amplitude of the cardiac component of the PLETH-waveform modulates due to respiratory-related changes in intrathoracic pressure.

The CPC algorithms utilize the PLETH-wave for sleep analysis and combined with SpO2 information calculating the
Sleeplmage Apnea Hypopnea Index (sAHI), the Sleeplmage Respiratory Disturbance Index (sRDI) and hypoxic burden
(HB). The data is automatically calculated, and the output is presented through easy-to-understand biomarkers that are
displayed with expected normative thresholds and color-coded results for each biomarker. The Sleeplmage Apnea
Hypopnea Index (sAHI) has been clinically validated and FDA-cleared for children (2+), adolescents and adults for
diagnosis and management of Sleep Disordered Breathing (SDB) (H. S. Al Ashry, H. Hilmisson, Y. Ni, R. J. Thomas, et al.,
2021; Hilmisson et al., ; Lu et al., 2023).

Evaluation of Sleep Breathing Events During Sleep
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The American Academy of Sleep Medicine (AASM) practice guidelines for scoring of sleep and associated events defines
two methods to evaluate respiration, (1) an airflow channel and an effort channel, or alternatively (2) peripheral arterial
tone (pat)1 as a surrogate for “airflow/effort”. These alternative methods are also commonly defined in insurance
reimbursement policies for Home Sleep Apnea Testing (HSAT).

The airflow channel is commonly recorded using a nasal pressure transducer (measuring changes in pressure of nasal
airflow) or an oronasal thermal flow sensor (measuring differences in temperature during inhalation and exhalation). The
effort channelis commonly recorded using respiratory inductance plethysmography (RIP) belts measuring movement of
the chest and/or abdominal wall during breathing to evaluate lung volume changes, presented as a derived digital signal
that represents a breathing curve.

The peripheral arterial tone method utilizes a photoplethysmography (PPG) sensor to record the PLETH-wave to evaluate
changes in breathing during sleep. More than one technique is available to present respiration from the peripheral arterial
tone.

Comparing the three commonly used channels to evaluate respiration (airflow, effort belts and PPG), it is best visualized
from a sleep study using PSG that has all three sensors to evaluate respiration. How the three methods compare in the
respective raw signals and how each method provides clinical information that can be used for the same intended use,
to evaluate respiratory events that can be manually reviewed and scored to define respiratory events (Figure 13 & Figure
14).

Figure 13. Respiratory Analysis (Airflow, RIP belt, PPG).
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1 Measurement of pulsatile volume changes reflecting changes in sympathetic tone.
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Figure 14. Breathing signal from a thorax belt (top line) and derived breathing signal from PLETH (bottom line) from a patient with obstructive sleep
apnea (a) and central sleep apnea (b).

When calculating sleep breathing events during sleep, the Sleeplmage system starts by utilizing the CPC-analysis:

(1) To evaluate sleep, by calculating sleep duration, sleep onset (SO), sleep conclusion (SC), total sleep time (TST) and
wake after sleep onset (WASO).

(2) To identify potential sleep pathologies evidenced by activity in a subset of the low-frequency band, called elevated
low-frequency (e-LFC) which has been correlated with sleep apnea (Magnusdottir & Hilmisson, 2018; Thomas et al.,
2007; Thomas et al., 2005).

Fragmentation (elevated low frequency broad-band, e-LFCBB) has high sensitivity but low specificity and is increased
in patients with pain, in patients with obstructive sleep apnea (OSA), insomnia and sleep movement disorders. The sleep
fragmentation caused by OSA presents “broad band peaks” on the 3-D spectrogram when the primary pathophysiologic
contributor is obstruction in the upper airway. During OSA breathing effort continues, but the upper airway is
mechanically obstructed, resulting in interruptions of airflow (Haitham S. Al Ashry et al., 2021; Thomas et al., 2005;
Thomas et al., 2018).

Periodicity (elevated low-frequency narrow-band, e-LFCNB) identifies periodic-type breathing and heart-rate patterns
that may occur during NREM and/or REM-sleep indicating sustained periods of Central Sleep Apnea (CSA) and periodic
breathing like high-loop gain, or “physiologic” periodicity due to Periodic Leg Movements (PLM’s) when drop in SpO, is
not observed. During central events there is a periodic lack of neural drive to breathe during sleep (Thomas et al., 2007;
Thomas et al., 2017).

Sleep fragmentation and abnormal amount of Unstable NREM-sleep reduces the restorative properties of sleep. In sleep
apnea, respiration can be resolved by the central nervous system (CNS) without involving a cortical arousal but when
cortical arousal is triggered, the ANS is enhanced with changes in heart rate and breathing causing sleep fragmentation.

(3) The TVV and SpO2 information from the PLETH-wave are then combined with the CPC-sleep analysis, to calculate the
Sleeplmage Apnea Hypopnea Index (sAHI) using American Academy of Sleep Medicine (AASM) scoring guidelines.

At the onset of apnea, the amplitude of the PLETH wave decreases, and the amplitude of the dicrotic notch increases.
Apneas are usually accompanied by a decrease in heart rate and blood pressure, and a drop in oxygen saturation (SpO5).
At the end of the apneic event, there is sympathetic activation with vasoconstriction and temporal decrease in the
amplitude of the PLETH-wave, accompanied by a sudden increase in heart rate, and an increase of SpO2 (Figure 15).
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Figure 15. Changes in the plethysmography-wave during sleep apnea. Schnall et. al., Sleep Medicine Reviews 2022 (Schnall et al., 2022).
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One of the key features of the Sleeplmage spectrogram’s key feature is a differentiation of non-overlapping sleep states
during the sleep period (Figure 7) which provide a clear visual of stable NREM-sleep (high-frequency coupling, HFC) and
unstable-NREM sleep (low-frequency coupling, LFC). REM and wake have similarities (very low-frequency coupling,
VvLFC) but can be differentiated by incorporating movement signals. The CPC calculations of sleep, used with the SpO2
measurements to detect desaturation events, collectively create output parameters for diagnosis and management of
sleep disordered breathing (obstructive and central sleep apnea) that can be manually scored in addition to the
autoscoring output. For diagnosis of SDB the Sleeplmage Apnea Hypopnea Index (sAHI) has a strong agreement with AHI
calculated from PSG (H. S. Al Ashry, H. Hilmisson, Y. Ni, & R. J. Thomas, 2021; H. S. Al Ashry, H. Hilmisson, Y. Ni, R. J.
Thomas, et al., 2021; Lu et al., 2023) and the method also differentiates between obstructive and central sleep apnea
(Magnusdottir & Hilmisson, 2018; Thomas, 2007).

Validation of the sAHI

The performance of the sAHI was validated by comparing the software generated sAHI to manually derived AHI from in-
laboratory PSG-sleep studies, currently considered as the “reference standard”. The data were collected in prospective
clinical trials that included both children and adults. Additionally, in adults the sAHI was compared to respiratory event
index (REI) from prospective clinical trials collected with Home Sleep Apnea Tests (HSAT). All comparisons are based on
disease severity categorization of sleep apnea based on definition by the American Academy of Sleep Medicine (AASM),
Table 1. The comparison of sAHI to AHI was further based on published guidelines from the American Academy of Sleep
Medicine (AASM), Obstructive Sleep Apnea Devices for Out-Of-Center (OOC) Testing: Technology Evaluation (Collop et
al., 2011). This guidance was prepared to “help clinicians decide which out-of-center (OOC) testing devices are
appropriate for diagnosing obstructive sleep apnea (OSA)” and is based on emphasizing Sensitivity and Positive
Likelihood Ratio. Guidelines from the American Academy of Pediatricians (AAP) (Marcus et al., 2012), calls forinformation
on sensitivities, specificities and predictive values to be available for physicians to familiarize themselves with, before
use in clinical evaluation and diagnosis of pediatric obstructive sleep apnea (POSA).

Table 1. Results comparing automated sAHI (CPC) and manually scored AHI (PSG) output.

sAHI vs AHI Mild Moderate Severe
Adults 96.3% 90.5% 98.9%
Cl95% [.936, .990] [.863, .947] [.975, 1.000]
Agreement
Children 89.1% 95.2% 98.1%
Cl95% [.875, .908] [.941, .964] [.974, .989]
Adults 98.7% 92.6% 95.1%
Cl95% [.970, 1.000] [.869, .983] [.835,.994]
Sensitivity
Children 90.7% 89.3% 91.3%
Cl95% [.887,.927] [.852, .934] [.855,.971]
Adults 84.8% 88.9% 100%
Cl95% [.726, .971] [.830, .948] [.975, 1.000]
Specificit
pectiicity Children 86.7% 96.3% 98.6%
Cl95% [.834, .895] [.951, .974] [.978, .992]
Adults 6.52 8.33 2801
Positive Likelihood Ratio
Children 6.81 24.37 66.71
Adults 0.015 0.083 0.060
Negative Likelihood Ratio
Children 0.107 0.111 0.088
Adults 96.9% 86.2% 100%
Positive Predictive Values
Children 91.5% 82.4% 83.2%
Adults 93.3% 94.1% 98.7%
Negative Predictive Values
Children 85.5% 97.9% 99.4%

1 Division by zero. PLR estimated using substitution formula
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e  Children (n=1,334) in the cohort; 39% of the children had no disease (n=518), 45% had mild sleep apnea (n=601),
9% moderate sleep apnea (n=123) and 7% had severe sleep apnea (n=92).

e Adults (PSG, n=189: HSAT, n=572) in the cohort; 12% had no sleep apnea (n=102), 30% had mild sleep apnea
(n=251), 37% moderate sleep apnea (n=313) and 21% severe sleep apnea (n=173).

Performance testing, comparing the two indices sAHI (CPC-output) and AHI (PSG-output), demonstrated strong
correlation as well as significant agreement in both defining events/hour and to identify SDB categories (no-disease, mild
sleep apnea, moderate sleep apnea, severe sleep apnea). The results are summarized in Table 1.

The difference between Likelihood Ratios and Predictive Values, can be explained as follows (Collop et al., 2011; Marcus
etal., 2012):

Likelihood Ratios (LR) are used to assess the value of performing a diagnostic test and are performed to determine
whether a test result usefully changes the probability that a disease state exists. AASM guidelines define acceptable
results as sensitivity of at least 82.5% and LR+ of at least 5 at anin-lab AHI of 5, demonstrating a 95% post-test probability
of the disease based on 80% pre-test probability of the disease.

Predictive Values (PV) reflect the diagnostic power of the test and depend on sensitivity, specificity, and disease
prevalence, as well as the reporting probability of the patient being positive/negative based on a positive/negative test
result. AAP does not have a guideline for what values are sufficient to generate passing results to diagnose a disease.

The sAHI, sRDI and SAl are indices intended to aid clinical evaluation, diagnosis, and management of sleep apnea in
children, adolescents, and adults. The sAHI is a counter of paused breathing events during sleep using the same scale
and reporting metrics as AHI derived from in-laboratory PSG studies and is reported on the same scale as the AHI from
PSG studies. The sRDI adds autonomic arousal detection to the sAHI. The SAl is based on cardiovascular reaction to
paused breathing (CVHR) during unstable sleep with a scale of 0 — 100. The SAl is based on different scaling-rules than
sAHI/sRDI, and they are not expected to have the same numerical output.

Sleep Apnea is associated with significantly increased risk of cardiovascular- and cardiometabolic morbidity and
mortality. In patients with cardiac autonomic dysfunction, that presents as decreased heart rate variability (HRV) and
ultimately can lead to a fixed heart rate due to progressive dysfunction of the cardiac sympathetic nervous system. In
this subgroup of patients, the SAl is an ineffective tool to detect apneas, as they do not exhibit the oscillatory heart rate
dynamics, but the CPC e-LFC biomarkers (Fragmentation and Periodicity) and the sAHI/sRDI are useful biomarkers to
aid in the diagnosis of SDB in this patient population. In patients with chronic Atrial Fibrillation (AF), the algorithm is
degraded as complex patterns cannot be identified and the chaos of the ANS results in less meaningful CPC output, thus
warranting caution in interpretation.

The Sleeplmage method is an accurate method for sleep apnea diagnosis, and it is particularly useful to track sleep
health over time to identify relative changes in sleep quality, and in individuals with sleep disorders, for disease
management, whether it is for insomnia or sleep disordered breathing, obstructive sleep apnea (OSA) and central sleep
apnea (CSA). The simple interface offers the potential to implement personalized approach into sleep medicine by
treating sleep disorders as other chronic diseases, (Collins & Varmus, 2015; Mazzotti et al., 2018; Pack, 2016; Penzel,
2021) with repeated testing in the patients’ natural sleeping environment in their home, over multiple nights and multiple
time points to optimize disease management and patients’ health (de Chazal et al., 2020; Parrino et al., 2022; Penzel et
al., 2025).

Further description of the Cardiopulmonary Coupling can be found in the sleep medicine textbook, Principles and
Practice of Sleep Medicine, (Kryger — Roth - Dement) Seventh Edition, Chapter 202. Cardiopulmonary Coupling.
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Sleeplmage in Sleep (Disorder) Management

The Sleeplmage System is a simple to use and low-cost method that offers the opportunity of multi-night testing to
evaluate night-to-night variability during the process of evaluating sleep complaints, and to track changes in sleep over
time, as part of sleep health management. Before prescribing a study using a PPG sensor (also known as pulse
oximeters), ensure that the sensor size fits the patient properly and if needed secure the sensor to prevent removal of the
sensor during the sleep recording.

The Sleep Quality Index (SQI) is a summary index of the Sleeplmage output, indicating sleep health in individuals of all
ages. Healthy aging is accompanied by a reduction in HRV and respiratory variability, causing an expected gradual
reduction of SQI values to be a normal part of healthy aging. While SQI values are comparable between individuals of
similar age, the greatest value of the SQl is to track sleep quality for each individual over time.

Night-to-night variability in sleep is recognized (Ding et al., 2025) and this variance should be expected to increase in
patients with sleep disorders (sleep pathology) and/or the presence of comorbidity. Differences should also be expected
over time due to environmental conditions, lifestyle changes and behavior, or other factors that can affect sleep and
cause night-to-night variability in sleep. It is well documented in the peer-reviewed clinical literature that sleep apnea
severity can vary considerably from night to night as has been reported in SDB-patients undergoing PSG-studies on
consecutive nights or one month apart, where changes in AHI were observed to be in the range of 18%-65%. (Punjabi et
al., 2020; Thomas et al., 2020; White et al., 2015). When sleep disorders are suspected, it is important to treat them as
other chronic conditions that can present different levels of symptoms over time. Measuring sleep in patients’ normal
sleep environment over multiple nights and on multiple occasions to capture the dynamics of sleep physiology and
pathology is important (Mazzotti et al., 2018; Pack, 2016; Penzel, 2021). Capturing and mitigating the night-to-night
variability respects the chronic nature of sleep disorders that should improve the diagnostic process, the management
of the disease and patient outcomes (Levendowski et al., 2009).

None of the values for the Sleeplmage biomarkers should be considered absolute threshold values; they are expected to
be generally similar when using the same sensor type. Although there are no signal specific contraindications, certain
conditions such as cardiovascular disease and arterial stiffness can reflect signal specific differences that can cause
variability where it is normal to expect £10% differences that can be greater for certain patients based on disease
conditions. For clinical use, it is recommended to consistently use the same sensor type.

Sleep (Disorder) Management in Children

Prevalence of sleep disorders in children are high, and prevalence of sleep disordered breathing (SDB) has likely been
increasing over the last 10 -20 years (Magnusdottir & Hill, 2024). Atthe sametime sleepisrarely addressed during routine
pediatric visits (Honaker & Meltzer, 2016). During the preschool years (3-5 years of age) lymphoid tissue growth peaks,
increasing the likelihood of symptoms of SDB developing (Dayyat et al., 2009). Clinical guidelines regarding diagnosis of
SDB in children, emphasize that attempts to specify severity of SDB and make treatment decisions solely based on the
Respiratory Event Index (REl) or Apnea Hypopnea Index (AHI) and minimum oxygen saturation may lead to
misclassification as children often present with changes in sleep architecture and fragmented sleep. Multi-night testing
will assist clinicians to evaluate SDB in children (Lloyd et al., 2019; Paruthi, 2021).

There is considerable variability in symptom presentation in children with OSA. This makes OSA difficult to diagnose and
demands increased awareness of SDB in children among clinicians. Excessive daytime sleepiness is not a frequently
reported symptom in children with OSA, who often present with hyperactivity, difficulty concentrating, attention-
behavioral- and mood-problems, enuresis, persistent mouth breathing with dry mouth and morning headaches (Lloyd et
al., 2019).
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The most common form of SDB in children is obstructive sleep apnea (OSA), characterized by abnormal respiratory and
ventilation patterns during sleep. OSA is a highly prevalent condition in children, with disease severity ranging from
primary habitual snoring (6%-25%) to obstructive sleep apnea (OSA), diagnosed when the apnea-hypopnea index (AHI)
>1.0 on nocturnal PSG (Marcus et al., 2012). Tonsillar-hypertrophy and obesity are the most common risk factors for OSA
in children and adenotonsillectomy (AT) is recommended as first-in-line therapy for children with tonsillar-hypertrophy
and OSA (Patel et al.,2014). The prevalence of pediatric obesity has beenincreasing worldwide over the past five decades
(1975-2016) with the global age-standardized prevalence of obesity in children and adolescents aged 5-19 years
increasing from 0.7% to 5.6% in girls and 0.9% to 7.8% in boys (Abarca-Gomez, 2017). This global epidemic of pediatric
obesity is likely to have contributed to increase in prevalence of pediatric OSA as obesity is associated with higher
prevalence of OSA in children and may occur in up to 60% of obese children (Narang & Mathew, 2012). This is seenin the
more reascent litterateur as the prevalence of OSA was estimated in a systematic review in 2008 as 1-4% when a
systematic review from 2023 estimates prevalence of OSA in young children as 12-20% (Magnusdottir & Hill, 2024).

Clinical studies have demonstrated limited success of this surgical intervention to treat pediatric OSA, indicating the
potential benefit for regular sleep testing in children during the years of rapid growth and development to evaluate the
need for and optimal timing of an intervention to treat pediatric OSA (Kang & Hsu, 2023).

Majority of children that undergo AT are diagnosed based on subjective evalulation/complaints and without any objective
confirmation. A study including healthy children suspected of OSA included PSG-evaluation before the AT surgery based
on parent’s concern and preference for their child to have objective evaluation of their sleep before surgery, found that
only about 45% of the children had OSA and might benefit from surgery (Abraham et al., 2021). Performing a surgery on a
child without a need may cause both unnecessary distress for the child and affect their future health prospects as well
as incurring unnecessary cost for both parents and payers. To further complicate disease management of OSA in
children, spontaneous polysomnographic improvements are well known and documented (46%) (Bhattacharjee et al.,
2010; Marcus et al., 2013) as well as residual disease following surgery with less than a third of children with OSA
achieving complete resolution with surgery (Mitchell & Kelly, 2007; Suri et al., 2015). Additionally, surgery may potentially
cause both serious short-term surgical complications and in the long-term significantly increase delayed respiratory,
allergic, and infectious sequelae (Byars et al., 2018; Cote et al., 2014; Goldman et al., 2013).

Studies looking at sleep management in pediatric care have observed a mismatch between prevalence of parents
reported symptoms of sleep problems, including snoring, SDB and insomnia and documented diagnoses by the
physician. In a study screening for snoring in primary care, only 38% of the children that screened positive for snoring
were referred for further evaluation (Erichsen et al., 2012). Although several screening questionnaires have been
developed to identify children with OSA, they have not proven accurate and are rarely used (Honaker & Meltzer, 2016).
Parent/caregiver reports of symptoms correlate poorly with PSG findings, and subjective clinical evaluation of tonsillar
size is not a reliable indicator of need for surgery or surgical success (Borgstrom et al., 2013; Chervin et al., 2007; Pierce
& Brietzke, 2019; Villa et al., 2015) .

Because of age related airway growth, children in particular stand to benefit from repeated objective and clinical
symptom evaluation over time. This symptom variability of OSA in children as well as the complexity of the disease,
mandates a careful data-driven clinical decision-making process prior to therapy, including surgery (Machado Junior &
Crespo, 2020). It is furthermore important to implement therapy-tracking post intervention for objective evaluation with
longitudinal care to improve clinical management as residual disease is common after AT-surgery in children. If left
untreated, the disease may adversely affect the child’s neurocognitive, behavioral, cardiovascular, and cardiometabolic
health over time and their health prospects (Reynaud et al., 2018; Song et al., 2016).

Both the American Academy of Pediatrics (AAP) and the American Academy of Sleep Medicine (AASM) recommend a
PSG-study to objectively assess and diagnose OSA in children prior to surgery, as questionnaires alone do not provide a

good diagnostic prediction of OSA in children (Incerti Parenti et al., 2021). These academic guidelines to establish
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objective evidence of OSA prior to surgical decisions are though frequently bypassed (Friedman et al., 2013). This may be
caused by the limited access to pediatric sleep laboratories, high cost of testing with increased parent out-of-pocket
expenses, or reported inconvenience for both the child and their caregivers (Mitchell & Kelly, 2007) and alternatives are
needed (Garde et al., 2022; Landry et al., 2024).

Diagnosis of SDB requires clinical, subjective- and objective sleep data. OSA in children is defined as AHI > 1.0/per hour
of sleep. However, the AHI must be considered in the context of the child's health, symptoms, and daytime functional
impairment to most accurately assess SDB significance, severity, and impact. The fact that the majority of treatment-
related changes in outcomes of OSA in children are not causally attributable to polysomnographic resolution or changes
in severity calls for additional sleep metrics that can be tracked over time (Isaiah et al., 2019).

Sleep testing small children should take into consideration the strength of their cardiac and respiratory systems that may
not result in a demonstrated positive diagnosis from a single night of testing, using the AHI as the diagnostic output. Itis
therefore important to monitor other parameters, such as arousals from PSG and fragmentation from CPC as indicators
of a masked disease based on the AHI, warranting a careful review of the raw data to evaluate the need for manual over-
scoring of the automated output. It should also be taken into consideration that children tend to move more during sleep
than adults that may cause movement artifacts that need to be removed for output accuracy and as children have strong
tendency to want to remove sensors (often subconsciously) during sleep. Therefore, important to secure the sensor on
small children for optimization of the recording. When evaluating the output, it is important to evaluate the quality of the
signal from each recording to remove areas of poor signal quality that can artificially identify areas as apneas where they
may have applied pressure on the sensor if the child sleeps on the sensor and when there are areas of movements,
causing an artifact identified as an apneic event. A primary value with Sleeplmage is that there is only one sensor applied
to the child, thus minimizing the situations explained here to mitigate the risk of a failed study; beyond that a single sensor
with no wires is also less likely to disturb the child’s sleep than a multi-sensor setup, such as with a PSG sleep test.

Sleeplmage is FDA-cleared for diagnosis of OSA in children based on the sAHI, it is low-cost, simple to use and not
intrusive for the child. This offers the potential to measure multiple nights of sleep in the child’s natural sleeping
environment to capture the dynamics of SDB, which may be a more appropriate method than making a therapy decision
from presentation of subjective symptoms, clinical evaluation, and objective measure at one specific pointin time.

Sleep (Disorder) Management in Adults

The same approach for sleep management in adults is important, and PSG and HSAT generally do not offer the
opportunity for repeated testing prior to disease diagnosis or to track efficacy of therapy. Currently the ratio of
undiagnosed SDB is estimated to be over 80% of the patient population or more than 936 million people (Benjafield et al.,
2019) are estimated to have the disease. Long-term compliance on positive airway pressure (PAP) therapy is considered
generally low and problematic, as effectiveness of therapy is greatly dependent on consistent use. The lack of
compliance may be caused by patients’ own subjective evaluation of not finding the benefit from therapy to outweigh the
burden of the therapy or be caused by negative effects of PAP-therapy on sleep quality (Magnusdottir et al., 2020;
Magnusdottir, 2021). Sleep quality evaluation at baseline as well as repeated testing for therapy efficacy is therefore
highly desirable for both patients and their clinicians to improve clinical management of sleep disorders (Magnusdottir
et al., 2020; Magnusdottir, 2021; Patil et al., 2019; Sawyer et al., 2011).

Only with this kind of repeated objective testing enabling dynamic longitudinal tracking and the opportunity for more
comprehensive phenotypic profiling in both clinical management of sleep disorders as well as in design and conduct of
research studies be fully utilized. Sleep disorder management needs to be practiced comparably to how other chronic
conditions like diabetes or hypertension are managed (Collins & Varmus, 2015; Mazzotti et al., 2018; Pack, 2016; Penzel,
2021). A change in clinical protocols to this extent could have a meaningful and measurable positive impact on patient
outcomes and on quality of research to provide insight into sleep, beyond focusing only on the presence of sleep apnea
in both health and disease. Improvements in management of sleep disorders will only be achievable with access to
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accurate and actionable clinical sleep tests that are evidence based, simple, low-cost, scalable, and can be self-
administered in the patients’ own natural sleep environment.

The Sleeplmage system offers an FDA-cleared, fully automated and rigorously validated output, thatis simple to use both
for patients and clinicians for unique insight into sleep health and sleep regulation (FDA, 2020):

(1) Stable sleep tracks slow wave power and results of repeated testing could provide new insights into night-to-night
sleep homeostatic mechanism (Ding et al., 2025; Thomas, 2016; Thomas et al., 2014; Thomas, 2018).

(2) Substantial overlap in symptom presentation of insomnia and OSA is documented. This advances the need for
methods that capture data and provide output that can be used for clinical evaluation of both insomnia and OSA before
making diagnostic decisions and initiation of therapy. Validated sleep tests for patients with sleep complaints who
currently are considered ineligible for PSG or HSAT testing filla void in clinical management of sleep disorders (Hilmisson,
Sveinsdottir, et al., 2019; Krakow et al., 2019; Thomas, 2018).

(3) The possibility to record sleep for more than one night in the patient’s natural sleep environment should offer an
opportunity for improved clinical management of sleep disorders. Change in clinical protocols to objectively test all
patients with sleep complaints for more than one night before any therapy is initiated could have a meaningful and
measurable positive impact on patient’s health and quality of life, disease management and public health (Collins &
Varmus, 2015; Pack, 2016; Penzel, 2021).
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Sleeplmage Output Parameters

Stable sleep (High-frequency coupling; 0.1-0.5Hz) is a biomarker of Stable NREM-sleep, which is characterized by
stable breathing and oxygenation, high vagal tone, n-CAP on the electroencephalogram (EEG), continuous occurrence of
slow oscillations (SO), high relative delta power, blood pressure dipping, and stable arousal threshold. This state may be
considered as “effective” NREM sleep. Effective sleep enables the desirable functions of sleep, across multiple
dimensions (e.g., neuronal network health, metabolic, immune etc.), such that spending periods in this state enables
recovery and restoration processes (Magnusdottir et al., 2020; Magnusdottir, 2021; Thomas, 2016; Thomas et al., 2014;
Wood et al., 2020).

Unstable sleep (Low-frequency coupling; 0.01-0.1Hz) is a biomarker of Unstable NREM-sleep, with exactly opposite
features when compared to stable sleep: low-frequency and tidal volume fluctuations, cyclic variation in heart rate, CAP
onthe EEG-trace, low relative delta power, non-dipping of blood pressure and variable arousal thresholds. This state may
be considered “ineffective” NREM sleep. Ineffective sleep fails to accomplish the desirable functions of healthy sleep. A
subset of low-frequency coupling is termed Elevated Low-Frequency Coupling (e-LFC) that has two subsets; an indicator
of Periodicity (elevated low frequency narrow band; e-LFCys) and Fragmentation (elevated low frequency coupling broad
band (e-LFCgg) (Magnusdottir et al., 2020; Magnusdottir, 2021; Thomas, 2016; Thomas et al., 2014; Thomas, 2007; Wood
et al., 2020).

Fragmentation (elevated low frequency coupling broad-band e-LFCgg) is a subset of low-frequency coupling during
NREM-sleep which is an indicator of sleep pathology (e.g., pain, insomnia, anxiety) or disordered breathing patterns like
Obstructive Sleep Apnea (OSA) and Upper Airway Resistance Syndrome (UARS) (Hilmisson, Lange, & Duntley, 2019;
Hilmisson, Sveinsdottir, et al., 2019; Lee et al., 2012; Magnusdottir & Hilmisson, 2018; Seo et al., 2021; Thomas, 2016;
Thomas et al., 2005; Thomas et al., 2009).

Periodicity (elevated low frequency coupling narrow-band e-LFCyg) is a subset of low-frequency coupling, consisting
of periodic-type breathing and heart-rate patterns that may occur during NREM and/or REM-sleep indicating sustained
periods of Central Sleep Apnea (CSA) and periodic breathing, or "physiologic" periodicity due to Periodic Leg Movements
(PLM’s) when drop in SpO2 is not observed. (Hilmisson, 2019; Hilmisson, Lange, & Duntley, 2019; Thomas et al., 2017;
Thomas, 2007)

Sleep Quality Index (SQI) is a summary index of the CPC biomarkers of sleep quality, sleep stability, fragmentation, and
periodicity, which provides a meaningful unit of measure of sleep health. The SQI is displayed on a scale of 0-100 with
expected values for both children and adults. The SQI is useful to track sleep health over time, whether to identify the
need for further clinical investigation or to track therapy. The SQI is easily communicated and relatable to the patient or
other lay persons, while at the same time being a comprehensive measure of sleep health based on clinical validation.
(Hilmisson et al., ; Hilmisson, Sveinsdottir, et al., 2019; Magnusdottir et al., 2020; Magnusdottir, 2021; Maijer, 2019;
Yuanjie, Yunxiao, Thomas, Yufen, et al., 2025)

Apnea Hypopnea Index (AHI) is an automated measure of Apnea/Hypopnea events that is FDA-cleared to aid diagnosis
of Sleep Disordered Breathing (SDB) in both children and adults following AASM categorization (mild, moderate, severe)
as summarized in Table 2. The Sleeplmage Apnea Hypopnea Index (sAHI) represents the total number of apneas (paused
breathing) and hypopneas (periods of shallow breathing) that occur on average per hour of sleep during the sleep
recording. The sAHI is calculated from changes in peripheral arterial tone (pat) as a result of changes in thorax pressure
affecting hemodynamics during apneas combined with SpO, analysis and sleep evaluation and arousal detection from
the CPC-analysis. Qualified events are displayed based on: (1) both 3% and 4% oxygen desaturation (2) as “Total”,
“Obstructive” and “Central” events, (3) the sAHI, like the Apnea Hypopnea Index (AHI), reports the number of paused
breathing events during the sleep period calculated according to the rules set by the American Academy of Sleep
Medicine (AASM) guidelines for event scoring. (H. S. Al Ashry, H. Hilmisson, Y. Ni, & R. J. Thomas, 2021; Hilmisson et al.,
; Luetal., 2023) The severity indicator (normal, mild, moderate, or severe) that appears on the Sleeplmage reportis based

27



on AASM’s disease severity categorization of sleep apnea. Diagnosis of sleep apnea is based on the evaluation of
patient’s medical history, clinical complaints and the sleep study results combined. The severity of OSA has historically
been quantified by utilizing the AHI that is a frequency rate measure and disregards the depth and duration of the
respiratory event, as well as related changes such as oxygen desaturations. Also, the AHI has not been found to be
strongly correlated with symptoms and other physiologically driven measures of OSA severity, and other indices may help
improve evaluation of SDB and the accuracy of diagnosis and therapy (Azarbarzin et al., 2019).

Table 2: Categorization of Sleep Apnea by American Academy of Sleep Medicine (AASM) for adults and children (events/hr.)

No Sleep Apnea Mild Sleep Apnea Moderate Sleep Apnea Severe Sleep Apnea
Adults AHI/REI < 5.0 AHI/REI 5.0t0<15.0 AHI/REI 15.0 to <30.0 AHI/REI 30.0
Children AHI< 1.0 AHI 1.0t0<5.0 AHI 5.0t0<10.0 AHI 10.0

Hypoxic Burden (HB) is defined as the total area under respiratory-event related oxygen desaturation curve derived from
a pre-event baseline oxygen desaturation and is reported as sum of all areas divided by total sleep time where the
resulting metric is reported with a unit of measure of percentage minutes per hour of sleep (%omin/hour). The measure
was developed to better quantify the frequency, depth and duration of respiratory event-related desaturation and has
demonstrated significant association with several adverse health outcomes. (Azarbarzin et al., 2019; Martinez-Garcia et
al., 2023; Ni, Lei, Tang, Liang, & Thomas, 2024)

Z Hypoxic Burden
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Time(years)

Figure 17. Hypoxic burden quintiles defined based on adjusted survival curves for cardiovascular mortality across categories of the hypoxic burden
(Azarbarzin et al., 2019)

The Respiratory Disturbance Index (RDI) is intended to aid in the characterization of respiratory events during sleep in
addition to sAHI. While the sAHI includes events that meet the definitions of apneas and/or hypopneas for diagnosis of
OSA, AHI does not include arousals that do not meet the criteria for desaturations. The sRDI includes apnea- and
hypopnea events and in addition arousals that are not related to desaturations but may disrupt sleep and cause sleep
fragmentation and may therefore provide information for more comprehensive evaluation of respiratory disturbances
during sleep. During a PSG-study, the RDI, unlike AHI, also accounts for EEG-arousals from sleep that do not meet the
definitions of apneas or hypopneas. As the Sleeplmage system is not based on recording EEG brainwaves but rather
cardiovascular and respiratory parameters, where presence of respiratory effort related arousals (RERAs) is detected
from changes in the autonomic nervous system (ANS) reflecting changes in the sympathetic tone based on changes in
heartrate acceleration (HRa) and Fragmentation (eLFCgg) without the requirement of a co-occurring oxygen desaturation
of 3% or more. The sRDI, when put into the context of patient symptoms for SDB, may thus provide the clinician with
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additional relevant information to aid clinical evaluation of SDB and to track treatment benefits. It is important to
understand that the sRDI detects changes in sympathetic-tone (autonomic arousal), which should be treated as a non-

invasive surrogate measure for EEG-arousal associated with non-desaturating hypopneas and RERA’s scored during a
PSG-study.

Sleep Apnea Indicator (SAl) is based on detecting cardiac reaction associated with prolonged cycles of oxygen
desaturation based on Cyclic Variation of Heart Rate (CVHR) during unstable breathing (tidal volume variability in
breathing). During each apnea event, blood oxygen decreases and is accompanied by a physiological reaction of
bradycardia and, when breathing resumes, a relative tachycardia; hypoxemia is thus reflected in this cardiac response
and in the Sleeplmage output as SAl. (Hilmisson, Lange, & Duntley, 2019; Magnusdottir & Hilmisson, 2018) CVHR can be
detected during Stable NREM-sleep that often may reflect events that are typically scored as mild hypopneas but may
also be triggered by other pathologies such as periodic limb movements (PLMS) or restless leg syndrome (RLS). For
clinical evaluation, itis important to consider both SAl that is likely to reflect apnea events that disturb sleep to lower the
SQl, and CVHR that is likely to reflect milder apneas and hypopneas that may or may not disturb sleep to lower the SQI.

Although SAl is categorically comparable to the AHI from PSG-studies, it is based on different physiological signals and
the unit of measure to quantify sleep apnea is different. SAl can be perceived as a severity biomarker for CPC-derived
parameters of SDB, while the AHI is literally a prevalence measure counting events per hour of sleep. Classification of
SDB utilizing the SAl is based on the same premise as the AHI, the common biomarker used to quantify severity of SDB,
as Mild, Moderate and Severe. Table 3 summarizes a comparison of SAl to AHI from Polysomnography (PSG) studies at
each of the severity thresholds for mild, moderate, and severe sleep apnea in children and adults.

Table 3. Results of comparing automated Sleeplmage Apnea Indicator (SAI/CVHR) and manually scored AHI (PSG) output.

SAI/CVHR vs AHI Mild Moderate Severe
SAl 79% 79% 87%
Adults
CVHR 83% 81% 89%
Agreement
SAl 88% 87% 96%
Children

CVHR 88% 85% 94%

When reviewing the sAHI and sRDI scores, it is recommended to consider SDB events concurrent with CPC sleep states
(sAHIstasLe, SAHIunstasLe, and sAHIgem) when evaluating and determining disease category and severity. It is furthermore
recommended to take into consideration the pathology biomarkers of Fragmentation (associated with obstruction) and
Periodicity (associated with periodic breathing) when interpreting the study output for diagnosis.

Expected Values - Sleep Quality and Sleep Pathology

Table 4. Expected values for CPC biomarkers are not absolute thresholds and need to be considered in context of patients’ sleep complaints,
comorbidity and patient history.

Expected Values Adults Children
Sleep Quality Index (SQI) >55 >70
Sleep Apnea Indicator (SAl) Mild / Moderate / Severe threshold markers 25/215/230 21/25/210
Apnea Hypopnea Index (sAHI) Mild / Moderate / Severe threshold markers 25/215/230 21/25/210
Respiratory Disturbance Index (sRDI) Mild / Moderate / Severe threshold markers 25/215/230 21/25/210
Elevated Low Frequency Coupling, Broad Band (e-LFCBB) <15 <8
Elevated Low Frequency Coupling, Narrow Band (e-LFCNB) <2 0
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Understanding the Sleeplmage Spectrogram

Sleeplmage graphically displays the coupling of heart (pulse) rate variability (HRV) and tidal volume variability (TVV) in the
Sleep Spectrogram. On the front-view Spectrogram, time (hh:mm) is displayed on the horizontal axis, and frequency (Hz)
is on the vertical axis. When both data streams (HRV & TVV) are in phase (coupled/synchronized), peaks are generated
on the graph to form a visual representation of the frequencies collected during the recording.

Full View Spectrogram

The full view of the Spectrogram (Figure 8) displays the peaks and oscillation pattern of HFC (NREMstbe), LFC
(NREMuynstabte) and vVLFC (REM/WAKE) for the time series. The vertical axis uses frequency range 0.004Hz to 0.5Hz and time
in hours on the horizontal axis.
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Figure 18. Oscillations between stable and unstable sleep are expected to modulate in 30-90-minute cycles that range
from 4-8 Cycles in an adult 8-hour healthy night’s sleep and correspond to the alternating periods of NREM and REM sleep.
When sleep is disrupted (sleep apnea, insomnia, stress, pain and a variety of other factors), the healthy sleep rhythm is disrupted.

HFC peak amplitude is in relation to the strength, and amount, of coupling or synchronization between the curves
generated by the coupling activity. Greater coupling results in higher amplitude peaks. Low amplitude peaks result from
less overlap between the curves generated by heart (pulse) rate variability and respiratory activity. A lack of coupling
between these two input data streams will result in zero value and no peak generation.

Stable Sleep or High Frequency Coupling - HFC

Stable NREM sleep (high frequency coupling) is displayed on the Spectrogram as dark blue peaks in the frequency range
of 0.1 - 0.5Hz. Most Stable sleep occurs during part of NREM stage-2 and all of NREM stage-3, correlating with the EEG
morphology called noncyclic alternating pattern (n-CAP) and delta waves. Stable sleep is a biomarker of integrated stable
NREM sleep and is associated with periods of stable breathing, high vagal tone, generally a non-cyclic alternating pattern
on the electroencephalogram, high relative delta power, physiologic blood pressure dipping, and stable arousal
threshold.

Unstable Sleep or Low Frequency Coupling - LFC

Unstable NREM sleep (low frequency coupling) is displayed on the Spectrogram as light blue peaks in the frequency range
of 0.01 - 0.1Hz. Unstable sleep is a biomarker of integrated unstable NREM sleep, with opposite features to Stable sleep
and occurs during NREM stage-1 and part of NREM stage-2 sleep. Unstable sleep is associated with EEG activities called
cyclic alternating pattern (CAP), periods of fluctuating breathing patterns (tidal volume variation), cyclic variations in
heart rate (CVHR), blood pressure non-dipping and variable arousal thresholds. Fragmented REM sleep has low-

frequency coupling characteristics.
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Wake & REM sleep or Very Low Frequency Coupling - vLFC

Very low frequency coupling (VLFC) is displayed on the Spectrogram as orange peaks in the frequency range of 0.004 -
0.01Hz and represent REM sleep & wake.

During the course of the sleep period, spontaneous shifts occur between stable and unstable sleep. Oscillations
between stable and unstable sleep are expected to modulate in 60-90 minute-cycles ranging from 4-8 cycles for an
adult’s 8-hour healthy sleep and correspond to the alternating periods of NREM and REM sleep (Figure 8). Disease states
negatively impact this pattern. Healthy, stable sleep is dominated by high vagal tone, and results in characteristic heart
rate variability where the heart rate slows down and speeds up in synchrony with regular respiration. This is a normal
rhythm and is associated with stable NREM sleep (HFC).

Distinguishing Between Sleep Disordered Breathing Types

Sleep Disordered Breathing (SDB) comprises a wide spectrum of sleep-related breathing abnormalities, from snoring to
severe sleep apnea. There are two major categories of SDB:

Obstructive Sleep Apnea shows a Central Sleep Apnea shows a line of
"broad” peakR distribution “narrow” peaks

Figure 16. Spectral analysis of fragmented sleep (“broad” peak distribution) on the left and central event (“narrow” peaks) on the right.

Obstructive Sleep Apnea (OSA) - 3D Spectrogram

OSA, the most common type of sleep apnea and is related to increased upper airway resistance and/or closure of the
airway during sleep causing oxygen levels to drop and fragments sleep causing arousals (RERAs) and/or awakenings. The
presence of a broad band of peaks indicates that the upper airway is the primary pathophysiological contributor to the
patient’s sleep apnea. The e-LFCgg is presented by broad light blue peaks on the 3D Spectrogram (Figure 16 on the left).

Central Sleep Apnea (CSA) - 3D Spectrogram

CSA is caused by the brain temporarily not sending signals to the muscles that control breathing. This condition often
occurs in people who have certain medical problems and when not associated with another disease, it is refered to as
idiopathic central sleep apnea. A condition, Cheyne-Stokes respiration, subtype of CSA presents similarly on the
Sleeplmage-Spectrogram. CNS or periodic breathing is represented by narrow red colored peaks as e-LFCyg on the 3D
Spectrogram view and identifies patterns of breathing or movement having a “narrow band” LFC profile as a visual
identifier in addition to the sAHI quantifying central events (Figure 16 on the right).
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The Sleeplmage Report

The Sleeplmage Report & Graphics
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Test Summary:
Patient: 54 year old Male

Average Signal Quality is 94 %.

Sleep Quality is below expected value.
Sleep Efficiency is above expected value.
Sleep Duration is within expected value.

Sleep Apnea Indicator is above expected value.
Apnea Hypopnea Index is Moderate .

Sleep Fragmentation is above expected value.
Periodicity is below expected value.
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Reviewing Sleeplmage Report Output

10.

11.

12.

13.

Check Signal Quality. Only predominantly green signal quality should be considered for clinical decision-making.
Yellow and Red signal quality should be evaluated for signal abnormalities (signal noise) or signal loss.

Evaluate Sleep Quality. SQI indicates sleep health, with expected values as SQI >55 (adults) or >70 (children).
SQlis a summary of sleep stability, fragmentation, and periodicity on a scale from 0 - 100. Sleep Efficiency is the
ratio of Total Sleep Time divided by Sleep Opportunity and should be >85%.

Evaluate Sleep Opportunity which is defined by time in bed (TIB) allocated to sleep, including Sleep Onset
Latency (SOL) and Sleep Duration (SD). SD includes Total Sleep Time (TST) & Wake After Sleep Onset (WASO).
Expected SL is generally defined as <30min. SD is defined by age groups. Although Insomnia cannot be
diagnosed from a single night of sleep and needs to be combined with subjective evaluation, including daytime
symptoms, SL and Sleep Efficiency (SE) are the most commonly used metrics to evaluate symptoms of
Insomnia. For accurate SE during the sleep period, exclude the wake period after the last sleep period by
recalculating the sleep recording.

Evaluate Sleep Apnea. The Sleeplmage Apnea Hypopnea Index (sAHI) and the Sleeplmage Respiratory
Disturbance Index (sRDI) are intended to aid in diagnosing sleep apnea (SA) and in the characterization of
respiratory events during sleep. The indices are categorized as ‘Mild’; ‘Moderate’ and ‘Severe’ with values for
Children for each category 21, 25 and 210 respectively and for adult values for each category are 25, 215 and 230
respectively. Sleep Apnea Indicator (SAl) can indicate SA with good agreement when compared against AHI,
despite being based on cardiovascular reaction rather than desaturations to detect and quantify SA. Threshold
values for SAl are the same as for sAHI/sRDI for children and adults, respectively.

Review Sleep Pathology. The Sleep Pathology biomarkers are Fragmentation (e-LFCBB) indicating sleep
fragmentation, autonomic arousals and obstructive apneas, and Periodicity (e-LFCNB) indicating central
apneas.

Review Sleep Stability. Stable Sleep is the mostimportant indicator of restorative sleep that has good agreement
with Slow Wave (Delta) Sleep from PSG-sleep recordings. Stable sleep is expected to be >50% in adults and
>65% in children.

Review Transition. Sleep Stability is affected by transitions to Wake and should be evaluated.

Review CVHR. Evaluating CVHR events in relation to sleep stability may help clinical evaluation of apnea severity
beyond the prevalence that is reported by the sAHI and/or sRDI that adds RERAs to the sAHI metrics. CVHR
during Stable Sleep is excluded from calculations of the Sleep Apnea Indicator (SAl) but may indicate events
typically scored as mild hypopnea events in PSG sleep studies and/or can be caused by periodic leg movements.
Apnea Hypopnea Index (sAHI) & Respiratory Disturbance Index (sRDI). Observe the sleep stages (Stable-,
Unstable- and REM sleep) to evaluate where sAHI is dominant and observe relationship with CVHR and how
fragmentation has caused autonomic arousals as indicated with the sRDI. sAHI & sRDI are displayed based on
3% and 4% desaturations and separated to obstructive and central events in the sAHI Summary Table. Observe
the relationship of SQI and sAHI/sRDI. Evaluate how severely sleep apnea is affecting sleep quality, the
maximum, minimum and mean duration of apnea events and how the events affect heart rate (BPM).

Review Oxygen Summary. The percentage of oxygen saturation <90%, <88%, <80% are indicators of hypoxemia
severity during sleep, in addition to the Min, Max, and Mean SpO2 during the sleep period.

Review Hypoxic Burden. Hypoxic burden is an indicator of drops in oxygen levels during the night. It is measured
as % minutes per hour of sleep.

Summary. The Sleeplmage Report automatically summarizes the key metrics from the Sleeplmage analysis to
aid the Clinician in summarizing the Clinical Evaluation and recommendations for further testing and evaluation
(referral of patient to another clinician) or therapy.

Clinicians Notes. Allows treating clinicians to document signs and symptoms of sleep disorders, patient
medications, and medical history to document sleep disorder diagnosis. As additional information is gathered
from multi-night testing, the Clinician can edit his/her Notes to reflect changes, commonly used to document
treatment tracking.

33



Clinician Notes

Metric US Customary

Height : S S Weight:
Medicare:  Yes No Clear
Epworth Sleepiness Scale : 3

Sleep Complaints :
Select all that apply

Excessive Daytime Sleepiness
Snoring

Morning Headaches

Difficulty Falling Or Maintaining Sleep

Medical History

Medications Used :
1.

Add More

Diagnosis :
Select all that apply

G47.33 Obstructive Sleep Apnea
G47.32 High Altitude Periodic Breathing
G47.10 Hypersomnia, Unspecified
R06.3 Periodic Breathing

R53.83 Other Fatigue

Impressions and Recommendations

Publish

Add Clinician Notes :

Irregular (Paused Breathing During Sleep
Bruxism / Teeth Grinding
Waking Up Gasping Or Choking

%

Character Count: 0/ 1040
Treatment Device Used :

1.

Add More

G47.31 Primary Central Sleep Apnea
G47.9 Sleep Disorder, Unspecified
F51.01 Primary Insomnia

R06.83 Snoring

Other

Yz

Character Count: 0/ 1040
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10.

Reviewing Sleeplmage Graphics for Associations & Patterns
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Signal Quality: Evaluate the signal quality during the recording period. Red may indicate signal loss, and therefore the
Sleeplmage algorithms may not produce clinically relevant data during these periods. If long periods of signal loss are
present, itis recommended to repeat the sleep study.

Spectrogram: Review for HFC (stable sleep), LFC (unstable sleep) and vLFC (REM sleep and wake) distribution during the
recording period, CVHR (cyclic variation of heart rate, during unstable sleep presented as SAl) and sAHI/sRDI.
Hypnogram: Observe the frequency of transitions between Stable Sleep, Unstable Sleep, REM Sleep and Wake. A high
number of transitions indicate more fragmented sleep. Healthy sleep is indicated by higher prevalence of Stable Sleep
during the first third of the sleep period, with increased REM sleep towards the last third of the sleep period.

Sleep Disordered Breathing (sAHI, sRDI): While evaluating SDB, also consider fragmentation and periodicity.
Fragmentation indicates events that may be caused by obstructive apnea and are termed e-LFCgg. Periodicity indicates
metronomic activity that may be caused by central apnea or periodic breathing and is termed e-LFCyg.

Desaturation and SpO,: Review desaturation events and correlate in association with stable, unstable and REM sleep
and look for concurrent CVHR. Areas of SpO2-signal loss are often demonstrated by a large and sudden drop in SpO,.
CVHR: Evaluate CVHR in association with the Spectrogram, and oxygen saturation. CVHR is a marker of changes in heart
rate happening during and at the cessation of an apnea event.

Actigraphy: Associate level of Actigraphy with concurrent events, assess any patterns across the recording period.
Adjust the study period (Clinician Users): Drag the green and red markers on the orange line above the spectrogram to
the desired beginning and end of the study and click the Recalculate button.

Examine the raw data traces in the interactive graph that coincide with the timeline of the recording; concurrent events
can be observed in increments of 10 sec., 30 sec., 1 min., 2 min. and 4 min.

Toggle StableNREM, UnstableNREM and REM/Wake peaks (Clinician Users): The StableNREM, UnstableNREM,
REM/WAKE buttons above the spectrogram can turn stable, unstable and REM/Wake peaks on and off to isolate coupling
types for analysis of each sleep state.
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Glossary

AAP: American Academy of Pediatrics

AASM: American Academy of Sleep Medicine

ANS: Autonomic Nervous System

CAP: Cyclic Alternating Pattern

CPAP: Continuous Positive Airway Pressure

CPC: Cardiopulmonary Coupling - the synchronization of heart (pulse) rate variability and breathing activity

CSA: Central Sleep Apnea

CVHR: Cyclic Variation of Heart Rate. Heart rate pattern that happens during and at cessation of apnea events.

DSAT: Desaturation Events

e-LFCgg: Elevated Low Frequency Coupling, Broad Band - an indicator of sleep fragmentation (e.g. pain) or airway
disordered breathing patterns (e.g. Obstructive Sleep Apnea, Upper Airway Resistance. (see Understanding the

Sleeplmage Spectrogram)

e-LFCyg: Elevated Low Frequency Coupling, Narrow Band - an indicator of periodic-type breathing patterns e.g. Central
Sleep Apnea (see Understanding the Sleeplmage Spectrogram)

ECG (EKG): Electrocardiogram - recording the electrical activity of the heart over a period of time

EDR: Electrocardiogram Derived Respiration

EEG: Electroencephalogram - recording electrical activity of the brain along the scalp

HB: Hypoxic Burden

HFC: High Frequency Coupling — an indicator of stable sleep (see Understanding the Sleeplmage Spectrogram)
HRV: Heart Rate Variability

LFC: Low Frequency Coupling — an indicator of unstable sleep (see Understanding the Sleeplmage Spectrogram)
N-CAP: Non-Cyclic Alternating Pattern

NREM: Non-Rapid Eye Movement

OSA: Obstructive Sleep Apnea

PLETH: Plethysmography
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PPG: Photoplethysmography

PDR: Plethysmograph Derived Respiration

PRV: Pulse Rate Variability

PSG: Polysomnography — an in-laboratory sleep study where each 30 sec window (epoch) is manually scored.
PSN: Parasympathetic Nervous System

REM: Rapid Eye Movement

SA: Sleep Apnea

SAl: Sleep Apnea Indicator. Displays “one number” for apnea events through the recording period by automatically
detecting known changes that occur in the cardiovascular system during periods of sleep disordered breathing.

sAHI: Sleeplmage Apnea Hypopnea Index

SaMD: Software as a Medical Device

SDB: Sleep Disordered Breathing - refers to a wide range of sleep-related breathing abnormalities

SpO02: Oxygen Saturation

SNS: Sympathetic Nervous System

sRDI: Sleeplmage Respiratory Disturbance Index

SQI: Sleep Quality Index. Presents “one number” encompassing overall sleep health based on CPC metrics.
Spectrogram: Visual representation of the spectrum of the frequencies of Cardiopulmonary Coupling.
UARS: Upper Airway Resistance Syndrome

VLFC: Very Low Frequency Coupling - Wake/REM Sleep (see more in Understanding the Sleeplmage Spectrogram)
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